应用科学学报 ›› 2024, Vol. 42 ›› Issue (3): 416-424.doi: 10.3969/j.issn.0255-8297.2024.03.004

• 信号与信息处理 • 上一篇    下一篇

面向电子装备装配引导的AR跟踪方法研究

杜小东1, 王鹏2, 史建成1, 王月2, 帅昊2   

  1. 1. 中国电子科技集团公司第二十九研究所, 四川 成都 610036;
    2. 重庆邮电大学 先进制造工程学院, 重庆 400065
  • 收稿日期:2023-04-10 发布日期:2024-06-06
  • 通信作者: 王鹏,博士,研究方向为AR/MR关键技术和AR装配引导技术。E-mail: ilovemymfandb@163.com E-mail:ilovemymfandb@163.com
  • 基金资助:
    国家重点研发计划(No. 2020YFB1710300);航空科学基金(No. 2019ZE105001);重庆市自然科学基金面上项目(No. CSTC2019JCYJ-MSXMX0530, No. CSTB2022NSCQ-MSX1153)资助

Research on AR Tracking Method for Electronic Equipment Assembly Guidance

DU Xiaodong1, WANG Peng2, SHI Jiancheng1, WANG Yue2, SHUAI Hao2   

  1. 1. Southwest China Research Institute of Electronic Equipment, Chengdu 610036, Sichuan, China;
    2. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2023-04-10 Published:2024-06-06

摘要: 为了提高面向电子装备装配引导的增强现实(augmented reality,AR)跟踪方法的鲁棒性与适用性,在像素投票姿态估计网络结构的基础上,结合深度可分离卷积和通道注意力机制对AR跟踪算法进行优化。首先,针对电子装备六自由度姿态公共数据集稀缺与使用约束较多的问题,使用RGB-D相机采集并制作AR装配引导的电子装备的六自由度姿态训练数据集。然后,在基于像素投票的姿态估计网络结构基础上,使用深度可分离卷积对网络进行轻量化,并引入通道注意力机制对通道进行权重评估,以弥补网络轻量化造成的精度损失。最后,通过电子装备装配任务对提出的方法进行AR装配引导验证。实验结果表明:提出的跟踪注册方法相对于修改前的跟踪方法具有较好的鲁棒性,同时保持了装配引导的精度,能够对弱纹理的电子装备进行跟踪。

关键词: 电子装备, 增强现实, 三维跟踪, 深度可分离卷积, 通道注意力

Abstract: This paper aims to enhance the robustness and versatility of augmented reality (AR) tracking methods for electronic equipment assembly guidance by optimizing the structure of the position estimation network. This optimization involves integrating depthwise separable convolution with a channel attention mechanism. First, due to the lack of public datasets of 6 degrees of freedom (6-DOF) electronic equipment and various usage constraints, an RGB-D camera is used to collect and produce a 6-DOF training dataset for AR assembly guided electronic equipment. Then, using the structure of the position estimation network based on the pixel voting, depth-wise separable convolution is used to lighten the network, and the channel attention mechanism is introduced to evaluate the weight of the channels to compensate the accuracy loss caused by lightening the network. Finally, we verify the proposed network structure through AR assembly guidance by the electronic equipment task. Results show that the proposed tracking method exhibits superior robustness and maintains sound assembly guidance accuracy compared to existing method. Moreover, it can track the electronic equipment with weak texture and meet the real-time tracking requirements while ensuring accuracy.

Key words: electronic equipment, augmented reality, 3D tracking, depth-wise separable convolution, channel attention

中图分类号: