[1] 庄严, 李国良, 冯建华. 知识库实体对齐技术综述[J]. 计算机研究与发展, 2016, 53(1): 165-192. Zhuang Y, Li G L, Feng J H. A survey on entity alignment of knowledge base [J]. Journal of Computer Research and Development, 2016, 53(1): 165-192. (in Chinese) [2] Zhong Z X, Cao Y, Cao Y, et al. CoLink: an unsupervised framework for user identity linkage [C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 3379-3385. [3] Scharffe F, Liu Y, Zhou C. RDF-AI: an architecture for RDF datasets matching, fusion and interlink [C]//Proceedings of the International Joint Conferences on Artificial Intelligence, 2009: 23. [4] Suchanek F M, Abiteboul S, Senellart P. PARIS: probabilistic alignment of relations, instances, and schema [J]. Proceedings of the VLDB Endowment, 2011, 5(3): 157-168. [5] Chen M H, Tian Y T, Yang M H, et al. Multilingual knowledge graph embeddings for crosslingual knowledge alignment [C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2017: 1511-1517. [6] Sun Z Q, Hu W, Zhang Q H, et al. Bootstrapping entity alignment with knowledge graph embedding [C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2018: 4396-4402. [7] Sun Z Q, Huang J C, Hu W, et al. TransEdge: translating relation-contextualized embeddings for knowledge graphs [C]//International Semantic Web Conference. Cham: Springer, 2019: 612- 629. [8] Trisedya B D, Qi J Z, Zhang R. Entity alignment between knowledge graphs using attribute embeddings [C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 297-304. [9] Sun Z Q, Hu W, Li C K. Cross-lingual entity alignment via joint attribute-preserving embedding [C]//International Semantic Web Conference. Cham: Springer, 2017: 628-644. [10] Chen M, Tian Y, Chang K W, et al. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment [C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2018: 3998-4004. [11] Yang K, Liu S Q, Zhao J F, et al. COTSAE: CO-training of structure and attribute embeddings for entity alignment [C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3): 3025-3032. [12] Zhang Q H, Sun Z Q, Hu W, et al. Multi-view knowledge graph embedding for entity alignment [C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2019: 5429-5435. [13] Wang Z C, Lyu Q S, Lan X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks [C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 349-357. [14] Wu Y T, Liu X, Feng Y S, et al. Jointly learning entity and relation representations for entity alignment [C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 240-249. [15] Xu K, Wang L W, Yu M, et al. Cross-lingual knowledge graph alignment via graph matching neural network [C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 3156-3161. [16] Wu Y T, Liu X, Feng Y S, et al. Neighborhood matching network for entity alignment [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 6477-6487. [17] Zeng W X, Zhao X, Tang J Y, et al. Collective entity alignment via adaptive features [C]//2020 IEEE 36th International Conference on Data Engineering (ICDE), 2020: 1870-1873. [18] Liu Y, Li H, Garcia-Duran A, et al. MMKG: multi-modal knowledge graphs [C]//European Semantic Web Conference. Cham: Springer, 2019: 459-474. [19] Chen L Y, Li Z, Wang Y J, et al. MMEA: entity alignment for multi-modal knowledge graph [C]//International Conference on Knowledge Science, Engineering and Management. Cham: Springer, 2020: 134-147. [20] Guo H, Tang J Y, Zeng W X, et al. Multi-modal entity alignment in hyperbolic space [J]. Neurocomputing, 2021, 461: 598-607. [21] Xin K X, Sun Z Q, Hua W, et al. Informed multi-context entity alignment [C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022: 1197-1205. [22] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [DB/OL]. 2014[2022-11-14]. https://arxiv.org/abs/1409.1556. [23] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. [24] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering [C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems, 2016: 3844-3852. [25] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs [C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems, 2017: 1024-1034. [26] Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks [J]. Stat, 2017, 1050(20): 48550. [27] Devlin J, Chang M W, Lee K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186. [28] Li C J, Cao Y X, Hou L, et al. Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model [C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 2723-2732. [29] Wang Z C, Lyu Q S, Lan X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks [C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 349-357. [30] Xie R B, Liu Z Y, Luan H B, et al. Image-embodied knowledge representation learning [C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 3140-3146. [31] Duchi J C, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization [J]. Journal of Machine Learning Research, 2011, 12(7): 2121-2159. [32] 郭浩, 李欣奕, 唐九阳, 等. 自适应特征融合的多模态实体对齐研究[J]. 自动化学报, 2024, 50(4): 758-770. Guo H, Li X Y, Tang J Y, et al. Adaptive feature fusion for multi-modal entity alignment [J]. Acta Automatica Sinica, 2024, 50(4): 758-770. (in Chinese) |