应用科学学报 ›› 2025, Vol. 43 ›› Issue (4): 643-655.doi: 10.3969/j.issn.0255-8297.2025.04.007

• 计算机科学与应用 • 上一篇    

基于多粒度集成学习的地震相聚类分析技术

罗红梅1, 王长江1, 杨培杰1, 管晓燕1, 周小杰2, 余航2   

  1. 1. 中国石化胜利油田分公司 勘探开发研究院, 山东 东营 257015;
    2. 上海大学 计算机工程与科学学院, 上海 200444
  • 收稿日期:2023-10-24 发布日期:2025-07-31
  • 通信作者: 余航,教授,研究方向为人工智能方法及应用。E-mail:yuhang@shu.edu.cn E-mail:yuhang@shu.edu.cn
  • 基金资助:
    中石化科技攻关项目(No.P22035)

Seismic Phase Clustering Analysis Technology Based on Multi-granularity Ensemble Learning

LUO Hongmei1, WANG Changjiang1, YANG Peijie1, GUAN Xiaoyan1, ZHOU Xiaojie2, YU Hang2   

  1. 1. Exploration and Development Research Institute, Shengli Oilfield Company, SINOPEC, Dongying 257015, Shandong, China;
    2. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
  • Received:2023-10-24 Published:2025-07-31

摘要: 为了更有效地降低地质结构差异对储层预测的影响,提出了一种基于多粒度集成学习的地震相聚类分析技术。首先从粗粒度、细粒度和微粒度三个角度分别提取地震数据的不同尺度特征。粗粒度特征利用斯皮尔曼相关系数反映地层间的宏观关系;细粒度特征基于长短期记忆网络学习波形之间的细节特性;微粒度特征则基于动态时间规整距离捕捉单一波形的微观差异。在此基础上,利用自组织映射方法获得不同粒度下的聚类结果,并采用基于软配准的集成学习技术融合不同粒度下的聚类结果,有效解决了单一粒度受地质结构差异影响较大的问题。实验结果表明,所提出的多粒度集成学习算法能够更好地改善地震相聚类结果,并为不同区域的储层预测提供有效参考。

关键词: 地震相聚类分析, 多粒度, 集成学习, 动态时间规整, 自组织映射

Abstract: To mitigate the impact of geological structural variations on reservoir prediction, this study proposes a novel seismic phase clustering analysis technique based on multi-granularity ensemble learning. The technique first extracts features at three scales: coarse-grained, fine-grained, and micro-grained. Coarse-grained features are derived using the Spearman correlation coefficient to reflect the macroscopic relationships between strata. Fine-grained features are extracted via long short-term memory (LSTM) networks to capture detailed characteristics among waveforms. Micro-grained features are obtained through dynamic time warping (DTW) distances to capture the microscopic differences within individual waveforms. Subsequently, through self-organizing map methods, clustering results are obtained for each granularity. A soft alignment-based ensemble learning technique is then applied to integrate the clustering results from different granularities, effectively addressing the limitations of single-granularity approaches influenced by geological structural variations. Experimental results demonstrate that the proposed multi-granularity ensemble learning algorithm significantly enhances seismic clustering accuracy and provides a valuable reference for reservoir prediction across different regions.

Key words: seismic phase clustering analysis, multi-granularity, ensemble learning, dynamic time warping (DTW), self-organizing maps (SOM)

中图分类号: