应用科学学报 ›› 2013, Vol. 31 ›› Issue (3): 285-293.doi: 10.3969/j.issn.0255-8297.2013.03.011

• 控制与系统 • 上一篇    下一篇

一种新型自适应粒子群优化粒子滤波算法及应用

陈志敏, 薄煜明, 吴盘龙, 宋公飞, 段文勇   


  1. 南京理工大学自动化学院,南京210094  
  • 收稿日期:2011-09-14 修回日期:2011-12-20 出版日期:2013-05-28 发布日期:2013-05-28
  • 作者简介:陈志敏,博士生,研究方向:导航制导、信息处理、控制与系统,E-mail:chenzhimin@188.com;薄煜明,研究员,博导,研究方向:火力控制、目标跟踪、导航制导,E-mail:byming@mail.njust.edu.cn
  • 基金资助:

    国防重点预研项目基金(No.40405020201); 高等学校博士学科点专项科研基金(No.20113219110027);国家自然科学基金(No.61104196);南京理工大学紫金之星基金(No.AB41381)资助

Novel Particle Filtering Based on Adaptive Particle Swarm Optimization and Its Application

CHEN Zhi-min, BO Yu-ming, WU Pan-long, SONG Gong-fei, DUAN Wen-yong   

  1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2011-09-14 Revised:2011-12-20 Online:2013-05-28 Published:2013-05-28

摘要: 基于粒子群优化的粒子滤波算法精度不高,运算复杂度大,难以在实际工程中应用. 为此,文中提出一种新型邻域自适应调整的动态粒子群优化粒子滤波算法. 该算法考虑了粒子的邻域信息,利用多样性因子、邻域扩展因子和邻域限制因子共同对粒子的邻域粒子数量进行自适应调整,控制粒子对邻域的影响,减轻局部最优现象,达到收敛速度和寻优能力的最佳平衡. 利用UNGM模型、目标跟踪模型以及故障检测模型对算法的性能进行仿真测试,结果表明:该算法与PSO-PF相比提高了精度和运算速度,具有实际工程应用价值.

关键词: 粒子滤波, 粒子群优化, 目标跟踪, 故障检测

Abstract: Particle filter based on particle swarm optimization (PSO-PF) algorithm suffers from low precision and high computation complexity, therefore is difficult to be used in practical applications. This paper proposes   novel dynamic particle filter algorithm based on neighborhood adaptive particle swarm optimization (DPSOPF). The method takes the neighborhood information of particles into consideration. Factors of diversity, neighborhood extension, and neighborhood limiting are jointly used to realize self-adaption of neighborhood particle numbers. Thus the influence of particles on the neighborhood is under control, and the local optimization phenomenon is alleviated. Optimal balance is achieved between convergence speed and search ability. By using the univariate nonstationary growth model (UNGM), target tracking model and failure detection model, a simulation test of the algorithm is performed. The results show that, compared to PSO-PF, the proposed algorithm improves precision and computation speed, showing its applicability to practical engineering.

Key words: particle filter, particle swarm optimization, target tracking, fault detection

中图分类号: