[1] Velasco M G J, Melendez A M. Multi-robot motion coordination based on swing propagation [C]//The Seventh Mexican International Conference on Computer Science, 2006: 44-54. [2] Vig L, Adams J A. Multi-robot coalition formation [J]. IEEE Transactions on Robotics, 2006, 22(4): 637-649. [3] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents [J]. Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29-41. [4] Yu J J, Lavalle S M. Optimal multirobot path planning on graphs: complete algorithms and effective heuristics [J]. IEEE Transactions on Robotics, 2016, 32(5): 1163-1177. [5] Godoy J E, Karamouzas I, Guy S J, et al. Implicit coordination in crowded multi-agent navigation [C]//AAAI Conference on Artificial Intelligence, 2016, 30(1): 2487-2493. [6] Kwon J W, Chwa D. Hierarchical formation control based on a vector field method for wheeled mobile robots [J]. IEEE Transactions on Robotics, 2012, 28(6): 1335-1345. [7] Wang P K C. Navigation strategies for multiple autonomous mobile robots moving in formation [J]. Journal of Robotic Systems, 1991, 8(2): 177-195. [8] Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structures [J]. Autonomous Robots, 1997, 4(4): 387-403. [9] Lee G, Chwa D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance [J]. Intelligent Service Robotics, 2018, 11(1): 127-138. [10] Nazarahari M, Khanmirza E, Doostie S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm [J]. Expert Systems with Applications, 2019, 115: 106-120. [11] Castillo O, Trujillo L, Melin P. Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots [J]. Soft Computing, 2007, 11(3): 269-279. [12] Sutton R S, Barto A G. Reinforcement learning: an introduction [M]. Cambridge: MIT Press, 2018: 1-13. [13] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [14] Long P X, Fan T X, Liao X Y, et al. Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning [C]//IEEE International Conference on Robotics and Automation (ICRA), 2018: 6252-6259. [15] Mousavi S S, Schukat M, Howley E. Deep reinforcement learning: an overview [C]//SAI Intelligent Systems Conference, 2018: 426-440. [16] Dilokthanakul N, Kaplanis C, Pawlowski N, et al. Feature control as intrinsic motivation for hierarchical reinforcement learning [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3409-3418. [17] Niroui F, Zhang K C, Kashino Z, et al. Deep reinforcement learning robot for search and rescue applications: exploration in unknown cluttered environments [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 610-617. [18] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529-533. [19] Everett M, Chen Y F, How J P. Motion planning among dynamic, decision-making agents with deep reinforcement learning [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: 3052-3059. [20] Fan T X, Long P X, Liu W X, et al. Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios [J]. The International Journal of Robotics Research, 2020, 39(7): 856-892. [21] Han R H, Chen S D, Wang S J, et al. Reinforcement learned distributed multi-robot navigation with reciprocal velocity obstacle shaped rewards [J]. IEEE Robotics and Automation Letters, 2022, 7(3): 5896-5903. [22] Bai C C, Yan P, Pan W, et al. Learning-based multi-robot formation control with obstacle avoidance [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11811-11822. [23] Zhang Z, Wang X H, Zhang Q R, et al. Multi-robot cooperative pursuit via potential field-enhanced reinforcement learning [C]//IEEE International Conference on Robotics and Automation (ICRA), 2022: 8808-8814. [24] Xin J, Zhao H, Liu D, et al. Application of deep reinforcement learning in mobile robot path planning [C]//Chinese Automation Congress (CAC), 2017: 7112-7116. [25] Chen Y F, Liu M, Everett M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning [C]//IEEE International Conference on Robotics and Automation (ICRA), 2017: 285-292. [26] 李永迪, 李彩虹, 张耀玉, 等. 基于改进SAC算法的移动机器人路径规划[J]. 计算机应用, 2023, 43(2): 654-660. Li Y D, Li C H, Zhang Y Y, et al. Mobile robot path planning based on improved SAC algorithm [J]. Journal of Computer Applications, 2023, 43(2): 654-660.(in Chinese) [27] Yang Y, Li J T, Peng L L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm [J]. CAAI Transactions on Intelligence Technology, 2020, 5(3): 177-183. [28] Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor [DB/OL]. 2018[2023-06-29]. https://arxiv.org/abs/1801.01290.pdf [29] Imambi S, Prakash K B, Kanagachidambaresan G R. PyTorch [M]//Programming with tensorflow. Cham: Springer, 2021: 87-104. |