[1] Agarwal S, Kodialam M, Lakshman T V. Traffic engineering in software defined networks [C]//2013 Proceedings IEEE INFOCOM, 2013: 2211-2219. [2] Zhang Y, Wei Q S, Chen C, et al. Dynamic scheduling with service curve for QoS guarantee of large-scale cloud storage [J]. IEEE Transactions on Computers, 2018, 67(4): 457-468. [3] Hartman T, Hassidim A, Kaplan H, et al. How to split a flow? [C]//2012 Proceedings IEEE INFOCOM, 2012: 828-836. [4] 杨洋, 吕光宏, 赵会, 等. 深度学习在软件定义网络研究中的应用综述[J]. 软件学报, 2020, 31(7): 2184-2204. Yang Y, Lyu G H, Zhao H, et al. Survey on deep learning applications in software defined networking research [J]. Journal of Software, 2020, 31(7): 2184-2204. (in Chinese) [5] Cui W Z, Qian C. Scalable and load-balanced data center multicast [C]//2015 IEEE Global Telecommunications Conference (GLOBECOM), 2015: 1-6. [6] Chiesa M, Kindler G, Schapira M. Traffic engineering with equal-cost-multipath: an algorithmic perspective [J]. IEEE-ACM Transactions on Networking, 2017, 25(2): 779-792. [7] Guo Z Y, Duan J, Yang Y Y. On-line multicast scheduling with bounded congestion in fattree data center networks [J]. IEEE Journal on Selected Areas in Communications, 2014, 32(1): 102-115. [8] Lee M W, Li Y S, Huang X, et al. Robust multipath multicast routing algorithms for videos in software-defined networks [C]// IEEE International Symposium of Quality of Service (IWQoS), 2014: 218-227. [9] 柯文龙, 王勇, 叶苗, 等. Ceph云存储网络中一种业务优先级区分的多播流调度方法[J]. 通信学报, 2020, 41(11): 40-51. Ke W L, Wang Y, Ye M, et al. Priority differentiated multicast flow scheduling method in Ceph cloud storage network [J]. Journal on Communications, 2020, 41(11): 40-51. (in Chinese) [10] 孙茂鑫, 钱红燕, 陈兵, 等. SDN环境下基于MPTCP协议的切换管理[J]. 应用科学学报, 2017, 35(1): 117-127. Sun M X, Qian H Y, Chen B, et al. Handover management based on MPTCP in SDN environment [J]. Journal of Applied Sciences, 2017, 35(1): 117-127.(in Chinese) [11] Li Y, Gao T, Yang J, et al. Phasic self-imitative reduction for sparse-reward goal-conditioned reinforcement learning [C]//International Conference on Machine Learning (ICML), 2022: 12765-12781. [12] Su K, Lu Z. Divergence-regularized multi-agent actor-critic [C]//2022 International Conference on Machine Learning (ICML), 2022: 20580-20603. [13] Lin S C, Akyildiz I F, Wang P, et al. QoS-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach [C]//IEEE International Conference on Services Computing (SCC), 2016: 25-33. [14] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-learning [J]. AAAI Conference on Artificial Intelligence, 2016, 30(1): 2094-2100. [15] Yu C H, Lan J L, Guo Z H, et al. DROM: optimizing the routing in software-defined networks with deep reinforcement learning [J]. IEEE Access, 2018, 6: 64533-64539. [16] Tan K, Bremner D, Le Kernec J, et al. Intelligent handover algorithm for vehicle-to-network communications with double-deep Q-learning [J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7848-7862. [17] 孙鹏浩, 兰巨龙, 申涓, 等. 基于牵引控制的深度强化学习路由策略生成[J]. 计算机研究与发展, 2021, 58(7): 1563-1572. Sun P H, Lan J L, Shen J, et al. Pinning control-based routing policy generation using deep reinforcement learning [J]. Journal of Computer Research and Development, 2021, 58(7): 1563-1572. (in Chinese) [18] Saha N, Misra S, Bera S. Q-flag: QoS-aware flow-rule aggregation in software-defined IoT networks [J]. IEEE Internet of Things Journal, 2022, 9(7): 4899-4906. [19] Kim G, Kim Y, Lim H. Deep reinforcement learning-based routing on software-defined networks [J]. IEEE Access, 2022, 10: 18121-18133. [20] Mckeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69- 74. [21] Zhou W, Li L, Luo M, et al. REST API design patterns for SDN northbound API [C]//The 28th International Conference on Advanced Information Networking and Applications Workshops, 2014: 358-365. [22] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms [DB/OL]. 2017[2023-03-07]. https://arxiv.org/abs/1707.06347. [23] Xu Z Y, Tang J, Yin C X, et al. Experience-driven congestion control: when multi-path TCP meets deep reinforcement learning [J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1325-1336. [24] 王帅, 董育宁, 李涛. 基于LSTM和特征生成的网络流量分类[J]. 应用科学学报, 2022, 40(5): 758-769. Wang S, Dong Y N, Li T. Network traffic classification based on LSTM and feature generation [J]. Journal of Applied Sciences, 2022, 40(5): 758-769. (in Chinese) [25] Brandt S, Weil S. Ceph: reliable, scalable, and high-performance distributed storage [J]. Annals of Physics (Santa Cruz), 2007: 129-239. [26] Macedo R, Paulo J, Pereira J, et al. A survey and classification of software-defined storage systems [J]. ACM Computing Surveys (CSUR), 2020, 53(3): 1-38. [27] Knight S, Nguyen H X, Falkner N R, et al. The Internet topology zoo [J]. IEEE Journal on Selected Areas in Communications, 2011, 29(9): 1765-1775. |