应用科学学报 ›› 2024, Vol. 42 ›› Issue (3): 486-498.doi: 10.3969/j.issn.0255-8297.2024.03.010

• 数字媒体取证与安全专栏 • 上一篇    下一篇

一种新型深度分类神经网络黑盒指纹水印算法

莫谋科1, 王春桃1,2,3,4, 郭庆文1, 边山1,2   

  1. 1. 华南农业大学 数学与信息学院, 广东 广州 510610;
    2. 农业农村部华南热带智慧农业技术重点实验室, 广东 广州 510610;
    3. 广东省农业人工智能重点实验室, 广东 广州 510610;
    4. 广州市智慧农业重点实验室, 广东 广州 510610
  • 收稿日期:2023-11-23 发布日期:2024-06-06
  • 通信作者: 王春桃,教授,博导,研究方向为信息隐藏和多媒体信号处理。E-mail: wangct@scau.edu.cn E-mail:wangct@scau.edu.cn
  • 基金资助:
    国家自然科学基金(No. 62172165, No. U22B2047);广东省自然科学基金(No. 2022A1515010325);广州市基础与应用基础研究项目(No. 202201010742);广州市科技项目(No. 202102020582)资助

A Novel Black-Box Finger-Print Watermarking Algorithm for Deep Classification Neural Network

MO Mouke1, WANG Chuntao1,2,3,4, GUO Qingwen1, BIAN Shan1,2   

  1. 1. College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510610, Guangdong, China;
    2. Key Laboratory of Smart Agricultural Technology in Tropical South China, Guangzhou 510610, Guangdong, China;
    3. Guangdong Key Laboratory of Agricultural Artificial Intelligence, Guangzhou 510610, Guangdong, China;
    4. Guangzhou Key Laboratory of Intelligent Agriculture, Guangzhou 510610, Guangdong, China
  • Received:2023-11-23 Published:2024-06-06

摘要: 提出了一种新型的强鲁棒黑盒指纹水印框架及方法。首先,提出了一种基于数字水印技术的高视觉质量的、具有一定安全性的毒化图像构造方法,将指示用户身份的信息嵌入到毒化图像,实现多用户场景下深度神经网络模型的可追溯性,并降低毒化图像被伪造的概率;其次,提出了毒化特征加强模块来优化模型训练;最后,设计了对抗训练策略,有效地学习到嵌入强度很小的指纹水印。大量的仿真实验表明,所构造的毒化图像中的指纹水印具有非常好的隐蔽性,大幅超越了WaNet等同类最优模型水印方法;以分类性能降低不超过2.4%的代价获得了超过99%的黑盒模型指纹水印验证率;且即便在指纹水印相差1位时亦能准确地进行模型水印版权验证。这些性能总体上优于同类最优的模型水印方法,表明了所提方法的可行性和有效性。

关键词: 黑盒模型水印, 分类模型, 毒化图像, 指纹水印, 鲁棒性

Abstract: This paper proposes a novel framework and method for strong robust blackbox classification model finger-print watermarking. First of all, we develop a method for constructing poisoned images with high visual quality and enhanced security based on digital watermarking technology. This method embeds user identity information into the poisoned image, enabling traceability of deep neural network models in multiuser scenarios and reducing the susceptibility of the poisoned image to forgery. Second, we introduce a poisoned feature enhancement module to optimize the training of the model. Finally, we design an adversary training strategy, which can effectively learn the finger-print watermark with minimal embedding strength and reduce the probability of forged poisoned images. Extensive simulation experiments show that the good invisibility of the fingerprint watermark in the poisoned image constructed by our method, superior to similar optimal model watermarking methods such as WaNet. More than 99% of the black-box model finger-print watermarking verification rate is obtained at the cost of no more than a 2.4% reduction in the classification performance. Even with a difference of just one bit in the finger-print watermark, accurate verification of the model watermarking by copyright is achieved. These performances are generally better than the best-in-class model watermarking methods, demonstrating the feasibility and effectiveness of our proposed method.

Key words: black-box model watermarking, classification models, poisoned images, fingerprint watermarking, robustness

中图分类号: