[1] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. [2] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [3] Zhao L J, Bai H H, Wang A H, et al. Multiple description convolutional neural networks for image compression [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(8): 2494-2508. [4] Yang R, Xu M, Liu T, et al. Enhancing quality for HEVC compressed videos [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(7): 2039-2054. [5] Kang K, Li H S, Yan J J, et al. T-CNN: tubelets with convolutional neural networks for object detection from videos [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2896-2907. [6] Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [DB/OL]. 2018[2023-11-23]. http://arxiv.org/abs/1810.04805. [7] Doan K D, Reddy C K. Efficient implicit unsupervised text hashing using adversarial autoencoder [C]//Proceedings of the Web Conference, 2020: 684-694. [8] Liu Y T, Xie Y, Srivastava A. Neural trojans [C]//2017 IEEE International Conference on Computer Design (ICCD), 2017: 45-48. [9] Liu Y Q, Ma S Q, Aafer Y, et al. Trojaning attack on neural networks [C]//Proceedings 2018 Network and Distributed System Security Symposium, 2018: 1781. [10] Gu T Y, Dolan-Gavitt B, Garg S. BadNets: identifying vulnerabilities in the machine learning model supply chain [DB/OL]. 2017[2023-11-23]. https://arxiv.org/abs/1708.06733. [11] Chen X Y, Liu C, Li B, et al. Targeted backdoor attacks on deep learning systems using data poisoning [DB/OL]. 2017[2023-11-23]. https://arxiv.org/abs/1712.05526. [12] Barni M, Kallas K, Tondi B. A new backdoor attack in CNNS by training set corruption without label poisoning [C]//2019 IEEE International Conference on Image Processing (ICIP), 2019: 101-105. [13] Nguyen A, Tran A. WaNet-imperceptible warping-based backdoor attack [DB/OL]. 2021[2023-11-23]. http://arxiv.org/abs/2102.10369. [14] Xu T, Li Y M, Jiang Y, et al. BATT: backdoor attack with transformation-based triggers [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5. [15] Wang Z T, Zhai J, Ma S Q. BppAttack: stealthy and efficient Trojan attacks against deep neural networks via image quantization and contrastive adversarial learning [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 15054-15063. [16] Doan K, Lao Y J, Zhao W J, et al. LIRA: learnable, imperceptible and robust backdoor attacks [C]//IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 11946- 11956. [17] Li Y Z, Li Y M, Wu B Y, et al. Invisible backdoor attack with sample-specific triggers [C]//IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 16443-16452. [18] Wang T, Yao Y, Xu F, et al. An invisible black-box backdoor attack through frequency domain [C]//European Conference on Computer Vision, 2022: 396-413. [19] Kwon H, Kim Y. BlindNet backdoor: attack on deep neural network using blind watermark [J]. Multimedia Tools and Applications, 2022, 81(5): 6217-6234. [20] Navas K A, Ajay M C, Lekshmi M, et al. DWT-DCT-SVD based watermarking [C]//2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE ’08), 2008: 271-274. [21] Kansal M, Singh G, Kranthi B V. DWT, DCT and SVD based digital image watermarking [C]//2012 International Conference on Computing Sciences, 2012: 77-81. [22] Singh A K, Dave M, Mohan A. Hybrid technique for robust and imperceptible image watermarking in DWT-DCT-SVD domain [J]. National Academy Science Letters, 2014, 37(4): 351-358. [23] Cheng S Y, Liu Y Q, Ma S Q, et al. Deep feature space Trojan attack of neural networks by controlled detoxification [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1148-1156. [24] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]//IEEE International Conference on Computer Vision (ICCV), 2017: 2242-2251. [25] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]//International Conference on Medical Image Computing and ComputerAssisted Intervention, 2015: 234-241. [26] Krizhevsky A. Learning multiple layers of features from tiny images [J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4): 1-60. [27] Stallkamp J, Schlipsing M, Salmen J, et al. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition [J]. Neural Networks, 2012, 32: 323-332. [28] Liu Z W, Luo P, Wang X G, et al. Deep learning face attributes in the wild [C]//IEEE International Conference on Computer Vision (ICCV), 2015: 3730-3738. |