应用科学学报 ›› 2006, Vol. 24 ›› Issue (4): 363-367.

• 论文 • 上一篇    下一篇

基于简化Mumford-Shah模型的活动轮廓边缘检测模型

徐旦华, 鲍旭东, 舒华忠, 罗立民   

  1. 东南大学影像科学技术实验室, 江苏南京 210096
  • 收稿日期:2005-04-25 修回日期:2005-07-31 出版日期:2006-07-31 发布日期:2006-07-31
  • 作者简介:徐旦华,博士生,研究方向:图像处理,E-mail:bao.list@seu.edu.cn;舒华忠,教授,博导,研究方向:计算优化、图像处理与模式识别,E-mail:shu.list@seu.edu.cn

Active Contour Model for Edge Detection Based on Simplified Mumford-Shah Functional

XU Dan-hua, BAO Xu-dong, SHU Hua-zhong, LUO Li-min   

  1. Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
  • Received:2005-04-25 Revised:2005-07-31 Online:2006-07-31 Published:2006-07-31

摘要: 在Chan-Vese活动轮廓模型(C-V法)的基础上,提出了一种新的边缘检测模型.在该模型中,图像被定义为两个同质区域的组合,图像边缘检测问题转化为基于Mumford-Shah泛函的能量函数最小化问题.本文在分片常数优化逼近中,添加了图像梯度信息,通过调节该项的权重因子,可以得到基于不同灰度强度的图像边缘图.该方法采用了水平集数值技术,因此活动轮廓具备了拓扑变化的能力,并能克服C-V模型检测不出离灰度均值较远的边缘的问题,实验表明了其有效性.

关键词: 边缘检测, 活动轮廓, Mumford-Shah模型, 水平集, 图像处理

Abstract: An improved active contour model for edge detection based on Chan and Vese active contour model is proposed.The basic idea is to evolve a curve under constraints from a given image, which is defined as a union of two homogeneous regions representing the object and background respectively.The edge can be detected by seeking a global minimum of an energy function based on the Mumford-Shah functional.The constant term in this model is modified by combining the image gradient information in piecewise constant optimal approximations.This different constant term can be obtained by adjusting the weighting factor that acts on the image gradient term in constant function, and different edge map based on different intensity of image can be obtained.This method is capable of handling changes in the topology of the evolving contour, and can avoid the problem arise in the C-V model that cannot detect the edges whose values are far from the mean intensity value of image.Effectiveness of this method is demonstrated in numerical experiments.

Key words: active contour, level set, Mumford-Shah functional, image processing, edge detection

中图分类号: