应用科学学报 ›› 2010, Vol. 28 ›› Issue (1): 60-64.

• 电子技术 • 上一篇    下一篇

应用小波的PV振荡周期多分辨率检测

徐占洋1;2, Charles ZHAN3, 张顺颐1   

  1. 1. 南京邮电大学江苏省信息网络研究中心,南京210003
    2. 南京信息工程大学计算机与软件学院,南京210044
    3. Advanced Process Control Research and Development Group, Honeywell Process Solutions,
    Phoenix, AZ 85027, USA
  • 收稿日期:2009-04-21 修回日期:2009-11-10 出版日期:2010-01-20 发布日期:2010-01-20
  • 作者简介:徐占洋,博士生,研究方向:信息处理、信息网络等,E-mail: zhanyang_xu@nuist.edu.cn;张顺颐,教授、博导,研究方向:计算机应用、信息网络,E-mail: dirzsy@njupt.edu.cn
  • 基金资助:

    Honeywell Process Solutions, USA 合作研究项目基金; 国家“863” 高技术研究发展计划基金(No.2009AA01Z212,No.200901Z202);江苏省自然科学基金(No.BK2007603);江苏省高技术研究计划基金(No.BG2007045);南京信息工程大学校科研基金(No.20070025);南京邮电大学攀登计划基金(No.NY2007044)资助

Multi-resolution Approach to Periodicity Detection Based on Wavelet Transform

XU Zhan-yang1;2, Charles ZHAN3, ZHANG Shun-yi1   

  1. 1. Institute of Information Network Technology, Nanjing University of Posts and Telecommunications,
    Nanjing 210003, China
    2. Department of Computer Sciences, Nanjing University of Information Science and Technology,
    Nanjing 210044, China
    3. Advanced Process Control Research and Development Group, Honeywell Process Solutions, Phoenix,
    AZ 85027, USA
  • Received:2009-04-21 Revised:2009-11-10 Online:2010-01-20 Published:2010-01-20

摘要:

该文提出了一种新的使用小波技术检测PV数据信号振荡周期的方法. 首先使用小波技术对PV数据进行降噪;然后在不同分辨率上,应用冗余二进制离散小波变换(DDWT)来分解PV振荡信号,并检测该信号的小波系数极值,重构PV信号,避免降噪后的PV信号失真;最后基于本文提出的新算法,计算获得PV振荡信号的周期.

关键词: PV振荡信号, 二进制离散小波变换, 小波系数, 极值, 周期检测

Abstract:

In this paper, we present a novel approach of periodicity detection using wavelet technology.Adaptive wavelet denoising is applied to the PV data. The redundant dyadic discrete wavelet transform is used to decompose the PV oscillation and detect the extreme wavelet coefficients which used to reconstruct the PV signal to avoid signal distortion at different resolution scales. Calculating the indexes based on the post-processing of extreme coefficients, periodicity at the scales selected is worked out, and the PV oscillation periodicity can be obtained.

Key words: periodicity detection, PV oscillation, DDWT, wavelet coefficient, extreme valuev

中图分类号: