[1] Chen X, Li X, Zhu H. Condition evaluation of urban metro shield tunnels in Shanghai through multiple indicators multiple causes model combined with multiple regression method[J]. Tunnelling and Underground Space Technology, 2019, 85:170-181.
[2] Catalano A, Bruno F, Pisco M, et al. An intrusion detection system based on the optical fiber technology for the protection of railway assets[C]//2015 XVIII AISEM Annual Conference. IEEE, 2015:1-4.
[3] Yu Z H, Liu F, Yuan Y Q, et al. Signal processing for time domain wavelengths of ultraweak FBGs array in perimeter security monitoring based on spark streaming[J]. Sensors, 2018, 18(9):2937.
[4] Niu H, Zhang X D, Hou C G. An approach for the dynamic measurement of ring gear strains of planetary gearboxes using fiber Bragg gratings[J]. Sensors, 2017, 17(12):2872.
[5] Catalano A, Bruno F A, Galliano C, et al. An optical fiber intrusion detection system for railway security[J]. Sensors and Actuators A:Physical, 2017, 253:91-100.
[6] Wada D, Igawa H, Kasai T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique[J]. Applied Optics, 2016, 55(25):6953-6959.
[7] 何雪. 低频油气勘探中光纤光栅加速度检波器的研究[D]. 西安:西安石油大学, 2020.
[8] 南秋明. 石化设备的光纤光栅动态传感监测方法研究[D]. 武汉:武汉理工大学, 2014.
[9] 潘国锋. 地下工程安全监测中FBG传感器应变传递特性及封装技术研究[D]. 长沙:国防科学技术大学, 2012.
[10] Zou W W, He Z Y, Hotate K. Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber[J]. IEEE Photonics Technology Letters, 2010, 22(8):526-528.
[11] Bolognini G, Soto M A. Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers[J]. Optics Express, 2010, 18(8):8459-8465.
[12] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7):8601-8639.
[13] Rogers A. Distributed optical-fibre sensing[J]. Measurement Science and Technology, 1999, 10(8):75-99.
[14] Mihailov S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2):1898-1918.
[15] Laffont G, Cotillard R, Ferdinand P. Multiplexed regenerated fiber Bragg gratings for high-temperature measurement[J]. Measurement Science & Technology, 2013, 24(9):094010.
[16] Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials:challenges and solutions[J]. Sensors, 2014, 14(4):7394-7419.
[17] Peng F, Duan N, Rao Y J, et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 2014, 26(20):2055-2057.
[18] He M, Feng L, Zhao D D. Application of distributed acoustic sensor technology in train running condition monitoring of the heavy-haul railway[J]. Optik, 2019, 181:343-350.
[19] 方星. 分布式光纤拉曼温度传感系统关键技术的研究[D]. 成都:电子科技大学, 2020.
[20] Loranger S, Gagné M, Lambin-Iezzi V, et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 2015, 5:11177.
[21] Yang S, Homa D, Pickrell G, et al. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber[J]. Optics Letters, 2018, 43(1):62-65.
[22] Donko A, Beresna M, Jung Y, et al. Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber[J]. Optics Express, 2018, 26(2):2039-2044.
[23] Wang Y P, Li Z L, Liu S, et al. Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology[J]. Journal of Lightwave Technology, 2019, 37(10):2185-2193.
[24] Guo H Y, Tang J G, Li X F, et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 2013, 11(3):030602.
[25] Wang Y M, Gong J M, Dong B, et al. A large serial time-division multiplexed fiber Bragg grating sensor network[J]. Journal of Lightwave Technology, 2012, 30(17):2751-2756.
[26] Hu C Y, Wen H Q, Bai W. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 2014, 32(7):1406-1411.
[27] Wang Y M, Gong J M, Wang D Y, et al. A quasi-distributed sensing network with timedivision-multiplexed fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2011, 23(2):70-72.
[28] Zhu F, Zhang Y X, Xia L, et al. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array[J]. Journal of Lightwave Technology, 2015, 33(23):4775-4780.
[29] Catalano A, Bruno F A, Pisco M, et al. An intrusion detection system for the protection of railway assets using fiber Bragg grating sensors[J]. Sensors, 2014, 14(10):18268-18285.
[30] Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10):1035-1037.
[31] Dong L, Archambault J L, Reekie L, et al. Single pulse Bragg gratings written during fibre drawing[J]. Electronics Letters, 1993, 29(17):1577-1578.
[32] Askins C G, Putnam M A, Williams G M, et al. Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower[J]. Optics Letters, 1994, 19(2):147-149.
[33] Putnam M A, Askins C G, Friebele E J, et al. Single pulse fabrication of fibre Bragg gratings using a phase-conjugated KrF excimer laser[J]. Electronics Letters, 1995, 31(11):885-886.
[34] Askins C G, Putnam M A, Patrick H J, et al. Fibre strength unaffected by on-line writing of single-pulse Bragg gratings[J]. Electronics Letters, 1997, 33(15):1333.
[35] Chojetzki C. High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II[J]. Optical Engineering, 2005, 44(6):060503.
[36] Rothhardt M, Becker M, Chojetzki C, et al. Strain sensor chains beyond 1000 individual fiber Bragg gratings[C]//Advanced Photonics & Renewable Energy, 2010.
[37] Lindner E, Canning J, Chojetzki C, et al. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration[J]. Applied Optics, 2011, 50(17):2519-2522.
[38] Guo H Y, Yu H H, Wu Y W, et al. Preparation of photosensitive fibers for weak fiber Bragg grating arrays[J]. Physics Procedia, 2013, 48:184-190.
[39] Zheng Y, Yu H H, Guo H Y, et al. Analysis of the spectrum distortions of weak fiber Bragg gratings fabricated in-line on a draw tower by the phase mask technique[J]. Journal of Lightwave Technology, 2015, 33(12):2670-2673.
[40] He J, Xu B J, Xu X Z, et al. Review of femtosecond-laser-inscribed fiber Bragg gratings:fabrication technologies and sensing applications[J]. Photonic Sensors, 2021, 11(2):203-226.
[41] He J, Wang Y, Liao C, et al. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration[J]. Scientific Reports, 2016, 6(10):23379.
[42] Liu S, Ding L Y, Guo H Y, et al. Thermal stability of drawing-tower grating written in a single mode fiber[J]. Journal of Lightwave Technology, 2019, 37(13):3073-3077.
[43] Guo H Y, Liu F, Yuan Y Q, et al. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber[J]. Optics Express, 2015, 23(4):4829-4838.
[44] Liu S, He G H, Zheng Z, et al. Importance of internal tensile stress in forming low-loss fiber draw-tower gratings[J]. Journal of Lightwave Technology, 2020, 38(7):1900-1904.
[45] Peng P C, Lin J H, Tseng H Y, et al. Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser[J]. IEEE Photonics Technology Letters, 2004, 16(1):230-232.
[46] Chuang K C, Ma C C, Wang H C. Simultaneous measurement of dynamic displacement and strain in a single fiber using coarse wavelength-division multiplexing and fiber Bragg-grating filter-based sensing system[J]. Applied Optics, 2016, 55(9):2426-2434.
[47] Luo Z H, Wen H Q, Guo H Y, et al. A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings[J]. Optics Express, 2013, 21(19):22799-22807.
[48] Sun Q, Ai F, Liu D, et al. M-OTDR sensing system based on 3D encoded microstructures[J]. Scientific Reports, 2017, 7:41137.
[49] Childers B A, Froggatt M E, Allison S G, et al. Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure[C]//The International Society for Optical Engineering, 2001, 4332:133-142.
[50] Zhang H R, Fan D, Ma Y, et al. Interrogation of 5000 ultraweak fiber Bragg grating sensors using optical frequency domain reflectometry[J]. Optical Engineering, 2018, 57:5.
[51] Hu C Y, Bai W. High-speed interrogation for large-scale fiber Bragg grating sensing[J]. Sensors, 2018, 18(3):665.
[52] Chan P K C, Jin W, Gong J M, et al. Multiplexing of fiber Bragg grating sensors using a FMCW technique[J]. IEEE Photonics Technology Letters, 1999, 11(11):1470-1472.
[53] Zhang M L, Sun Q Z, Wang Z, et al. A large capacity sensing network with identical weak fiber Bragg gratings multiplexing[J]. Optics Communications, 2012, 285(13/14):3082-3087.
[54] Gui X, Li Z Y, Wang F, et al. Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity[J]. Optics Express, 2017, 25(23):28112-28122.
[55] Gui X, Li Z Y, Fu X L, et al. Large-scale multiplexing of a FBG array with randomly varied characteristic parameters for distributed sensing[J]. Optics Letters, 2018, 43(21):5259-5262.
[56] 吴朝霞, 吴飞. 光纤光栅传感原理及应用[M]. 光纤光栅传感原理及应用, 2011.
[57] Hartog A H, Gold M P, Leach A P. Optical time-domain reflectometry:US4823166 A[P]. 1989-04-18.
[58] Sancho J, Chin S, Barrera D, et al. Time-frequency analysis of long fiber Bragg gratings with low reflectivity[J]. Optics Express, 2013, 21(6):7171-7179.
[59] Ricchiuti A L, Sales S. Spot event detection along a large-scale sensor based on ultra-weak fiber Bragg gratings using time-frequency analysis[J]. Applied Optics, 2016, 55(5):1054-1060.
[60] Wang J Q, Li Z Y, Fu X L, et al. High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulsewidth[J]. Optics Express, 2020, 28(11):16045-16056.
[61] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applphyslett, 1981, 39(9):693-695.
[62] 孙艮, 白浩杰, 石玉伦, 等. 光频域反射计的研究进展及应用[J]. 激光与光电子学进展, 2020, 57(5):79-90. Sun G, Bai H J, Shi Y L, et al. Research progress and application of optical frequency domain reflectometer[J]. Laser & Optoelectronics Progress, 2020, 57(5):79-90. (in Chinese)
[63] 李政颖, 孙文丰, 王洪海. 基于光频域反射技术的超弱反射光纤光栅传感技术研究[J]. 光学学报, 2015, 35(8):64-71. Li Z Y, Sun W F, Wang H H. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology[J]. Acta Optica Sinica, 2015, 35(8):64-71. (in Chinese)
[64] Xiang N, Li Z, Gui X, et al. Research on a high-precision calibration method for tunable lasers[J]. Measurement Science and Technology, 2018, 29(3):035201.
[65] Wang C J, Li Z Y, Gui X, et al. Micro-cavity array with high accuracy for fully distributed optical fiber sensing[J]. Journal of Lightwave Technology, 2019, 37(3):927-932.
[66] 蔡永俊. 调频连续波合成孔径雷达成像研究与系统实现[D]. 北京:中国科学院国家空间科学中心, 2016.
[67] Werzinger S, Bergdolt S, Engelbrecht R, et al. Quasi-distributed fiber Bragg grating sensing using stepped incoherent optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 2016, 34(22):5270-5277.
[68] 张纯. 基于调频连续波的弱反射光纤光栅解调系统研究与实现[D]. 武汉:武汉理工大学, 2017.
[69] Wang J Q, Li Z Y, Yang Q, et al. Interrogation of a large-capacity densely spaced fiber Bragg grating array using chaos-based incoherent-optical frequency domain reflectometry[J]. Optics Letters, 2019, 44(21):5202-5205.
[70] 姜德生, 何伟. 光纤光栅传感器的应用概况[J]. 光电子·激光, 2002, 13(4):420-430. Jiang D S, He W. Review of applications for fiber Bragg grating sensors[J]. Journal of Optoelectronics·Laser, 2002, 13(4):420-430. (in Chinese)
[71] Zhang Q H, Xiong Z M. Crack detection of reinforced concrete structures based on BOFDA and FBG sensors[J]. Shock and Vibration, 2018, (8):1-10.
[72] 胡娜, 周祖德, 刘明尧. 基于FBG的机床龙门结构变形检测及重构研究[J]. 机械设计与制造, 2019(6):104-107. Hu N, Zhou Z D, Liu M Y. Research on deformation detection and reconstruction of gantry structure on machine tools based on fiber Bragg grating sensor[J]. Machinery Design & Manufacture, 2019(6):104-107. (in Chinese)
[73] 邹朋. 航空齿轮箱的振动与模态分析研究[D]. 重庆:重庆大学, 2018.
[74] 雷沫枝, 胡国安, 王月华, 等. 航空发动机离心叶轮高阶模态振动故障研究[J]. 振动与冲击, 2019, 38(22):244-250. Lei M Z, Hu G A, Wang Y H, et al. High order mode vibration failure of an aero-engine centrifugal impeller[J]. Journal of Vibration and Shock, 2019, 38(22):244-250. (in Chinese)
[75] Zheng D, Madrigal J, Chen H L, et al. Multicore fiber-Bragg-grating-based directional curvature sensor interrogated by a broadband source with a sinusoidal spectrum[J]. Optics Letters, 2017, 42(18):3710-3713.
[76] Barbarin Y, Lefrancois A, Magne S, et al. Dynamic high pressure measurements using a fiber Bragg grating probe and an arrayed waveguide grating spectrometer[C]//Interferometry XVIII. International Society for Optics and Photonics, 2016, 9960:99600U.
[77] 葛婉宁. 基于FBG传感器的振动检测系统开发与实现[D]. 济南:山东大学, 2017.
[78] 刘小敏, 王彦, 秦楠, 等. 基于C#和FBGA桥梁应变监测解调系统的实现[J]. 光学与光电技术, 2019, 17(4):64-70. Liu X M, Wang Y, Qin N, et al. Realization of bridge strain monitoring demodulation system based on C# and FBGA[J]. Optics & Optoelectronic Technology, 2019, 17(4):64-70. (in Chinese)
[79] Ma L M, Ma C, Wang Y M, et al. High-speed distributed sensing based on ultra weak FBGs and chromatic dispersion[J]. IEEE Photonics Technology Letters, 2016, 28(12):1344-1347.
[80] 李政颖, 孙文丰, 李子墨, 等. 基于色散补偿光纤的高速光纤光栅解调方法[J]. 物理学报, 2015, 64(23):142-146. Li Z Y, Sun W F, Li Z M, et al. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber[J]. Acta Physica Sinica, 2015, 64(23):142-146. (in Chinese)
[81] 刘泉, 王一鸣, 刘司琪, 等. 一种基于分布式反馈激光器的FBG高速解调系统[J]. 光电子·激光, 2015, 26(8):1473-1478. Liu Q, Wang Y M, Liu S Q, et al. A high-speed FBG interrogation system based on DFB laser[J]. Journal of Optoelectronics·Laser, 2015, 26(8):1473-1478.(in Chinese)
[82] Yao Y Q, Li Z Y, Wang Y M, et al. Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser[J]. Sensors, 2017, 17(7):1472.
[83] Tong Y C, Chan L Y, Tsang H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 1997, 33(11):983.
[84] Nakazaki Y, Yamashita S. Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing[J]. Optics Express, 2009, 17(10):8310-8318.
[85] 李政颖, 周祖德, 童杏林, 等. 高速大容量光纤光栅解调仪的研究[J]. 光学学报, 2012, 32(3):60-65. Li Z Y, Zhou Z D, Tong X L, et al. Research of high-speed large-capacity fiber Bragg grating demodulator[J]. Acta Optica Sinica, 2012, 32(3):60-65. (in Chinese)
[86] Huber R, Wojtkowski M, Fujimoto J G. Fourier domain mode locking (FDML):a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 2006, 14(8):3225-3237.
[87] Jung E J, Kim C S, Jeong M Y, et al. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser[J]. Optics Express, 2008, 16(21):16552-16560.
[88] Park J, Kwon Y S, Ko M O, et al. Dynamic fiber Bragg grating strain sensor interrogation based on resonance Fourier domain mode-locked fiber laser[C]//2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP). IEEE:291-292.
[89] Yamaguchi T, Shinoda Y. High-speed vibration measurement by fiber Bragg gratings with Fourier domain mode locking laser[C]//201725th Optical Fiber Sensors Conference (OFS). IEEE, 2017:1-4.
[90] 王一鸣, 胡陈晨, 刘泉, 等. 基于连续扫频光时域反射的全同弱光栅高速解调方法[J]. 物理学报, 2016, 65(20):133-142. Wang Y M, Hu C C, Liu Q, et al. High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry[J]. Acta Physica Sinica, 2016, 65(20):133-142. (in Chinese)
[91] Liu Q, Wang Y M, Li Z Y, et al. High-speed interrogation system of multi-encoding weak FBGs based on FDML wavelength swept laser[J]. Optics & Laser Technology, 2018, 107:54-58.
[92] Xin L P, Li Z Y, Gui X, et al. Surface intrusion event identification for subway tunnels using ultra-weak FBG array based fiber sensing[J]. Optics Express, 2020, 28(5):6794-6805.
[93] Fernández-Ruiz M R, Soto M A, Williams E F, et al. Distributed acoustic sensing for seismic activity monitoring[J]. APL Photonics, 2020, 5(3):030901.
[94] Wang C, Shang Y, Liu X H, et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings[J]. Optics Express, 2015, 23(22):29038-29046.
[95] 张英东, 黄俊斌, 顾宏灿, 等. 弱反射光纤光栅水听器水声探测机理研究[J]. 舰船电子工程, 2018, 38(12):180-184. Zhang Y D, Huang J B, Gu H C, et al. Research on underwater acoustic detection mechanism of weak reflective fiber Bragg grating hydrophone[J]. Ship Electronic Engineering, 2018, 38(12):180-184. (in Chinese)
[96] Ma P F, Liu K, Jiang J F, et al. Probabilistic event discrimination algorithm for fiber optic perimeter security systems[J]. Journal of Lightwave Technology, 2018, 36(11):2069-2075
[97] Bian P, Wu Y, Jia B, et al. Dual-wavelength Sagnac interferometer as perimeter sensor with Rayleigh backscatter rejection[J]. Optical Engineering, 2014, 53(4):044111.
[98] Chen Q, Jin C, Bao Y, et al. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer[J]. Optics Express, 2014, 22(3):2167-2173.
[99] Kondrat M, Szustakowski M, Pa A N, et al. A Sagnac-Michelson fibre optic interferometer:signal processing for disturbance localization[J]. Opto-Electronics Review, 2007, 15(3):127-132.
[100] Jiang L H, Yang R Y. Identification technique for the intrusion of airport enclosure based on double Mach-Zehnder interferometer[J]. Journal of Computers, 2012, 7(6):1453-1459.
[101] Fang G S, Xu T W, Feng S W, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 2015, 33(13):2811-2816
[102] Koyamada Y, Imahama M, Kubota K, et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 2009, 27(9):1142-1146.
[103] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science & Technology, 2013, 24(8):085204.
[104] Tong Y H, Li Z Y, Wang J Q, et al. High-speed Mach-Zehnder-OTDR distributed optical fiber vibration sensor using medium-coherence laser[J]. Photonic Sensors, 2018, 8(3):203-212.
[105] 柏林厚, 廖延彪, 张敏, 等. 干涉型光纤传感器相位生成载波解调方法改进与研究[J]. 光子学报, 2005, 34(9):1324-1327. Bai L H, Liao Y B, Zhang M, et al. The improvement on PGC demodulation method based on optical fiber interferometer sensors[J]. Acta Photonica Sinica, 2005, 34(9):1324-1327. (in Chinese)
[106] 蔡海文, 叶青, 王照勇, 等. 分布式光纤声波传感技术研究进展[J]. 应用科学学报, 2018, 36(1):41-58. Cai H W, Ye Q, Wang Z Y, et al. Progress in research of distributed fiber acoustic sensing techniques[J]. Journal of Applied Sciences, 2018, 36(1):41-58. (in Chinese)
[107] Nishiguchi K I. Phase unwrapping for fiber-optic distributed acoustic sensing[C]//Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, 2016:81-87.
[108] 王永红, 陈维杰, 钟诗民, 等. 相位解包裹技术及应用研究进展[J]. 测控技术, 2018, 37(12):1-7, 16. Wang Y H, Chen W J, Zhong S M, et al. Research progress in phase unwrapping technology and its applications[J]. Measurement & Control Technology, 2018, 37(12):1-7, 16.(in Chinese)
[109] 张冰, 王葵如, 颜玢玢, 等. 基于双波长和3×3光纤耦合器的干涉测量相位解卷绕方法[J]. 光学学报, 2018, 38(4):232-239. Zhang B, Wang K R, Yan F F, et al. Phase unwrapping method based on dual wavelength and 3×3 fiber coupler with interferometric measurement[J]. Acta Optica Sinica, 2018, 38(4):232-239. (in Chinese)
[110] Hong Z, Fang W, Lalor M J, et al. Spatiotemporal phase unwrapping and its application in fringe projection fiber optic phase-shifting profilometry[J]. Optical Engineering, 1999, 39:1958-1964.
[111] 郝红星, 于荣欢, 张喜涛. 质量图引导的干涉合成孔径雷达图像相位解缠算法[J]. 装备学院学报, 2017, 28(3):8-13. Hao H X, Yu R H, Zhang X T. A phase unwrapping method of interferometric SAR phase image based on quality map guided model[J]. Journal of Equipment Academy, 2017, 28(3):8-13. (in Chinese)
[112] Luo X M, Li H T, Dong Z L, et al. InSAR phase unwrapping based on square-root cubature Kalman filter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4627-4641.
[113] Palacios F, Gonçalves E, Ricardo J, et al. Adaptive filter to improve the performance of phase-unwrapping in digital holography[J]. Optics Communications, 2004, 238(4/5/6):245-251.
[114] 李盛林, 邓小芳, 王华英. 数字全息显微术中三种相位展开算法的比较研究[J]. 光学技术, 2020, 46(1):56-60. Li S L, Deng X F, Wang H Y. Comparison of three kinds of phase unwrapping algorithm in digital holographic microscopy[J]. Optical Technique, 2020, 46(1):56-60. (in Chinese)
[115] Fu X L, Wu J, Li Z Y, et al. Fiber-based large dynamic range vibration sensing with dualwavelength phase unwrapping[J]. Journal of Lightwave Technology, 2019, 37(24):6090-6096.
[116] 李政颖, 吴军, 傅雪蕾, 等. 基于双波长回归分析的光纤振动传感器相位解调装置与方法:109781240B[P]. 2021-03-09.
[117] Li Z Y, Tong Y H, Fu X L, et al. Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings[J]. Optics Express, 2018, 26(13):17437-17446.
[118] Huang J T, Zhang W T, Huang W H, et al. High-resolution fiber optic seismic sensor array for intrusion detection of subway tunnel[C]//Asia Communications and Photonics Conference (ACP). IEEE, 2018:1-3.
[119] Jiang D S, Zhou C M, Yang M H, et al. Research on optic fiber sensing engineering technology[C]//International Conference on Optical Fiber Sensors, 2012, 8421:84210J.
[120] Nordmark A. Fire and life safety for underground facilities:present status of fire and life safety principles related to underground facilities:ITA working group 4, "subsurface planning"[J]. Tunnelling and Underground Space Technology, 1998, 13(3):217-269.
[121] Ye X W, Ni Y Q, Yin J H. Safety monitoring of railway tunnel construction using FBG sensing technology[J]. Advances in Structural Engineering, 2013, 16(8):1401-1409.
[122] Zhu F D, Zhang D S, Fan P, et al. Non-uniform strain measurement along a fiber Bragg grating using optical frequency domainreflectometry[J]. Chinese Optics Letters, 2013, 11(10):100603.
[123] Wada D, Murayama H, Igawa H, et al. Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber Bragg grating based on optical frequency domain reflectometry[J]. Smart Materials and Structures, 2011, 20(8):085028.
[124] Igawa H, Ohta K, Kasai T, et al. Distributed measurements with a long gauge FBG sensor using optical frequency domain reflectometry[J]. Transactions of the Japan Society of Mechanical Engineers, 2008, 73(724):1912-1920.
[125] Wada D C, Igawa H, Kasai T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique[J]. Applied Optics, 2016, 55(25):6953-6959.
[126] Igawa H, Murayama H, Nakamura T, et al. Measurement of distributed strain and load identification using 1500 mm gauge length FBG and optical frequency domain reflectometry[C]//International Conference on Optical Fibre Sensors:International Society for Optics and Photonics, 2009, 7503:75035I.
[127] Gui X, Li Z Y, Fu X L, et al. High-density distributed crack tip sensing system using dense ultra-short FBG sensors[J]. Sensors, 2019, 19(7):1702.
[128] Yang M H, Bai W, Guo H Y, et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 2016, 6(1):26-41.
[129] Yang M H, Li C L, Mei Z H, et al. Thousands of fiber grating sensor array based on draw tower:a new platform for fiber-optic sensing[J]. Optical Fiber Sensors, 2018:FB6.
[130] Gan W B, Li S, Li Z Y, et al. Identification of ground intrusion in underground structures based on distributed structural vibration detected by ultra-weak FBG sensing technology[J]. Sensors, 2019, 19(9):2160.
[131] Nan Q, Li S, Yao Y, et al. A novel monitoring approach for train tracking and incursion detection in underground structures based on ultra-weak FBG sensing array[J]. Sensors, 2019, 19(12):2666.
[132] Shang Y, Yang Y H, Wang C, et al. Quasi-distributed acoustic sensing based on identical low-reflective fiber Bragg gratings[J]. Measurement Science and Technology, 2017, 28(1):015202.
[133] Li Y, Qian L, Zhou C M, et al. Multiple-octave-spanning vibration sensing based on simultaneous vector demodulation of 499 fiZeau interference signals from identical ultra-weak fiber Bragg gratings over 2.5 km[J]. Sensors, 2018, 18(2):210.
[134] Zhou C M, Pang Y D, Qian L, et al. Demodulation of a hydroacoustic sensor array of fiber interferometers based on ultra-weak fiber Bragg grating reflectors using a self-referencing signal[J]. Journal of Lightwave Technology, 2019, 37(11):2568-2576.
[135] Wang C, Shang Y, Zhao W A, et al. Distributed acoustic sensor using broadband weak FBG array for large temperature tolerance[J]. IEEE Sensors Journal, 2018, 18(7):2796-2800.
[136] Li C, Tang J, Jiang Y, et al. An enhanced distributed acoustic sensor with large temperature tolerance based on ultra-weak fiber Bragg grating array[J]. IEEE Photonics Journal, 2020, 12(4):1-11.
[137] Li C, Tang J, Cheng C, et al. Simultaneously distributed temperature and dynamic strain sensing based on a hybrid ultra-weak fiber grating array[J]. Optics Express, 2020, 28(23):34309-34319.