光纤传感技术

基于大规模光栅阵列光纤的分布式传感技术及应用综述

展开
  • 1. 武汉理工大学 光纤传感技术国家工程实验室, 湖北 武汉 430070;
    2. 武汉理工大学 宽带无线通信与传感器网络湖北省重点实验室, 湖北 武汉 430070

收稿日期: 2021-06-18

  网络出版日期: 2021-10-11

基金资助

国家自然科学基金(No.61735013,No.61905184)资助

Review of Distributed Optical Fiber Sensing Technology and Application Based on Large-Scale Grating Array Fiber

Expand
  • 1. National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    2. Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan 430070, Hubei, China

Received date: 2021-06-18

  Online published: 2021-10-11

摘要

光纤布拉格光栅传感技术因其具有高灵敏度、抗电磁干扰、体积小及易复用等特性而广泛应用于恶劣环境的温度、应变及振动等物理量检测。基于在线光纤拉丝塔的大规模光栅阵列光纤制备方法的实现,突破了传统光纤光栅分布式传感技术受限于机械强度和制备工艺复杂的限制,大大拓展了其在分布式传感领域的应用。本文系统地介绍了大规模光栅阵列光纤的制备、分布式解调方法与应用进展,从大规模光栅阵列光纤的在线制备技术,以及基于该阵列光纤的分布式传感解调技术,包括准静态波长解调技术、高速波长解调技术以及增强型动态相位解调技术等,特别关注解调速度、空间分辨率、复用容量等关键技术及传感性能。同时还介绍了基于大规模光栅阵列光纤的应用包括温度、应变分布式的准静态应用领域,以及振动分布式的相位动态应用领域等,包括大型建筑、机械、航空航天、石油化工等诸多领域的安全监测、故障诊断等工程应用方面。

本文引用格式

桂鑫, 李政颖, 王洪海, 王立新, 郭会勇 . 基于大规模光栅阵列光纤的分布式传感技术及应用综述[J]. 应用科学学报, 2021 , 39(5) : 747 -776 . DOI: 10.3969/j.issn.0255-8297.2021.05.004

Abstract

Fiber Bragg grating (FBG) sensing technology is widely used in the detection of temperature, strain and vibration in harsh environment, owing to its high sensitivity, anti-electromagnetic interference, small size and easy reuse. The realization of large-scale grating array fiber preparation method based on on-line fiber drawing tower breaks through the limitations of traditional distributed sensing technology of fiber grating due to mechanical strength and complex preparation process, which greatly expands its application in the field of distributed sensing. In this paper, the fabrication, distributed demodulation method and application progress of large-scale grating array fiber are systematically introduced. Firstly, the on-line fabrication technology and process of large-scale grating array fiber are introduced. Secondly, the distributed sensing demodulation technology including quasi-static wavelength demodulation technology, high-speed wavelength demodulation technology and enhanced dynamic phase demodulation technology are introduced, where some key technologies such as demodulation speed, spatial resolution, multiplexing capacity and sensing performance are especially focused on. At the same time, the applications based on large-scale grating array fiber are also introduced, including quasi-static applications of temperature and strain distribution and phase dynamic applications of vibration distribution, which can be widely applied in safety monitoring and fault diagnosis in large-scale construction, machinery, aerospace, petrochemical, and other engineering fields.

参考文献

[1] Chen X, Li X, Zhu H. Condition evaluation of urban metro shield tunnels in Shanghai through multiple indicators multiple causes model combined with multiple regression method[J]. Tunnelling and Underground Space Technology, 2019, 85:170-181.
[2] Catalano A, Bruno F, Pisco M, et al. An intrusion detection system based on the optical fiber technology for the protection of railway assets[C]//2015 XVIII AISEM Annual Conference. IEEE, 2015:1-4.
[3] Yu Z H, Liu F, Yuan Y Q, et al. Signal processing for time domain wavelengths of ultraweak FBGs array in perimeter security monitoring based on spark streaming[J]. Sensors, 2018, 18(9):2937.
[4] Niu H, Zhang X D, Hou C G. An approach for the dynamic measurement of ring gear strains of planetary gearboxes using fiber Bragg gratings[J]. Sensors, 2017, 17(12):2872.
[5] Catalano A, Bruno F A, Galliano C, et al. An optical fiber intrusion detection system for railway security[J]. Sensors and Actuators A:Physical, 2017, 253:91-100.
[6] Wada D, Igawa H, Kasai T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique[J]. Applied Optics, 2016, 55(25):6953-6959.
[7] 何雪. 低频油气勘探中光纤光栅加速度检波器的研究[D]. 西安:西安石油大学, 2020.
[8] 南秋明. 石化设备的光纤光栅动态传感监测方法研究[D]. 武汉:武汉理工大学, 2014.
[9] 潘国锋. 地下工程安全监测中FBG传感器应变传递特性及封装技术研究[D]. 长沙:国防科学技术大学, 2012.
[10] Zou W W, He Z Y, Hotate K. Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber[J]. IEEE Photonics Technology Letters, 2010, 22(8):526-528.
[11] Bolognini G, Soto M A. Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers[J]. Optics Express, 2010, 18(8):8459-8465.
[12] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7):8601-8639.
[13] Rogers A. Distributed optical-fibre sensing[J]. Measurement Science and Technology, 1999, 10(8):75-99.
[14] Mihailov S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2):1898-1918.
[15] Laffont G, Cotillard R, Ferdinand P. Multiplexed regenerated fiber Bragg gratings for high-temperature measurement[J]. Measurement Science & Technology, 2013, 24(9):094010.
[16] Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials:challenges and solutions[J]. Sensors, 2014, 14(4):7394-7419.
[17] Peng F, Duan N, Rao Y J, et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 2014, 26(20):2055-2057.
[18] He M, Feng L, Zhao D D. Application of distributed acoustic sensor technology in train running condition monitoring of the heavy-haul railway[J]. Optik, 2019, 181:343-350.
[19] 方星. 分布式光纤拉曼温度传感系统关键技术的研究[D]. 成都:电子科技大学, 2020.
[20] Loranger S, Gagné M, Lambin-Iezzi V, et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 2015, 5:11177.
[21] Yang S, Homa D, Pickrell G, et al. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber[J]. Optics Letters, 2018, 43(1):62-65.
[22] Donko A, Beresna M, Jung Y, et al. Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber[J]. Optics Express, 2018, 26(2):2039-2044.
[23] Wang Y P, Li Z L, Liu S, et al. Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology[J]. Journal of Lightwave Technology, 2019, 37(10):2185-2193.
[24] Guo H Y, Tang J G, Li X F, et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 2013, 11(3):030602.
[25] Wang Y M, Gong J M, Dong B, et al. A large serial time-division multiplexed fiber Bragg grating sensor network[J]. Journal of Lightwave Technology, 2012, 30(17):2751-2756.
[26] Hu C Y, Wen H Q, Bai W. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 2014, 32(7):1406-1411.
[27] Wang Y M, Gong J M, Wang D Y, et al. A quasi-distributed sensing network with timedivision-multiplexed fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2011, 23(2):70-72.
[28] Zhu F, Zhang Y X, Xia L, et al. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array[J]. Journal of Lightwave Technology, 2015, 33(23):4775-4780.
[29] Catalano A, Bruno F A, Pisco M, et al. An intrusion detection system for the protection of railway assets using fiber Bragg grating sensors[J]. Sensors, 2014, 14(10):18268-18285.
[30] Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10):1035-1037.
[31] Dong L, Archambault J L, Reekie L, et al. Single pulse Bragg gratings written during fibre drawing[J]. Electronics Letters, 1993, 29(17):1577-1578.
[32] Askins C G, Putnam M A, Williams G M, et al. Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower[J]. Optics Letters, 1994, 19(2):147-149.
[33] Putnam M A, Askins C G, Friebele E J, et al. Single pulse fabrication of fibre Bragg gratings using a phase-conjugated KrF excimer laser[J]. Electronics Letters, 1995, 31(11):885-886.
[34] Askins C G, Putnam M A, Patrick H J, et al. Fibre strength unaffected by on-line writing of single-pulse Bragg gratings[J]. Electronics Letters, 1997, 33(15):1333.
[35] Chojetzki C. High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II[J]. Optical Engineering, 2005, 44(6):060503.
[36] Rothhardt M, Becker M, Chojetzki C, et al. Strain sensor chains beyond 1000 individual fiber Bragg gratings[C]//Advanced Photonics & Renewable Energy, 2010.
[37] Lindner E, Canning J, Chojetzki C, et al. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration[J]. Applied Optics, 2011, 50(17):2519-2522.
[38] Guo H Y, Yu H H, Wu Y W, et al. Preparation of photosensitive fibers for weak fiber Bragg grating arrays[J]. Physics Procedia, 2013, 48:184-190.
[39] Zheng Y, Yu H H, Guo H Y, et al. Analysis of the spectrum distortions of weak fiber Bragg gratings fabricated in-line on a draw tower by the phase mask technique[J]. Journal of Lightwave Technology, 2015, 33(12):2670-2673.
[40] He J, Xu B J, Xu X Z, et al. Review of femtosecond-laser-inscribed fiber Bragg gratings:fabrication technologies and sensing applications[J]. Photonic Sensors, 2021, 11(2):203-226.
[41] He J, Wang Y, Liao C, et al. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration[J]. Scientific Reports, 2016, 6(10):23379.
[42] Liu S, Ding L Y, Guo H Y, et al. Thermal stability of drawing-tower grating written in a single mode fiber[J]. Journal of Lightwave Technology, 2019, 37(13):3073-3077.
[43] Guo H Y, Liu F, Yuan Y Q, et al. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber[J]. Optics Express, 2015, 23(4):4829-4838.
[44] Liu S, He G H, Zheng Z, et al. Importance of internal tensile stress in forming low-loss fiber draw-tower gratings[J]. Journal of Lightwave Technology, 2020, 38(7):1900-1904.
[45] Peng P C, Lin J H, Tseng H Y, et al. Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser[J]. IEEE Photonics Technology Letters, 2004, 16(1):230-232.
[46] Chuang K C, Ma C C, Wang H C. Simultaneous measurement of dynamic displacement and strain in a single fiber using coarse wavelength-division multiplexing and fiber Bragg-grating filter-based sensing system[J]. Applied Optics, 2016, 55(9):2426-2434.
[47] Luo Z H, Wen H Q, Guo H Y, et al. A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings[J]. Optics Express, 2013, 21(19):22799-22807.
[48] Sun Q, Ai F, Liu D, et al. M-OTDR sensing system based on 3D encoded microstructures[J]. Scientific Reports, 2017, 7:41137.
[49] Childers B A, Froggatt M E, Allison S G, et al. Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure[C]//The International Society for Optical Engineering, 2001, 4332:133-142.
[50] Zhang H R, Fan D, Ma Y, et al. Interrogation of 5000 ultraweak fiber Bragg grating sensors using optical frequency domain reflectometry[J]. Optical Engineering, 2018, 57:5.
[51] Hu C Y, Bai W. High-speed interrogation for large-scale fiber Bragg grating sensing[J]. Sensors, 2018, 18(3):665.
[52] Chan P K C, Jin W, Gong J M, et al. Multiplexing of fiber Bragg grating sensors using a FMCW technique[J]. IEEE Photonics Technology Letters, 1999, 11(11):1470-1472.
[53] Zhang M L, Sun Q Z, Wang Z, et al. A large capacity sensing network with identical weak fiber Bragg gratings multiplexing[J]. Optics Communications, 2012, 285(13/14):3082-3087.
[54] Gui X, Li Z Y, Wang F, et al. Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity[J]. Optics Express, 2017, 25(23):28112-28122.
[55] Gui X, Li Z Y, Fu X L, et al. Large-scale multiplexing of a FBG array with randomly varied characteristic parameters for distributed sensing[J]. Optics Letters, 2018, 43(21):5259-5262.
[56] 吴朝霞, 吴飞. 光纤光栅传感原理及应用[M]. 光纤光栅传感原理及应用, 2011.
[57] Hartog A H, Gold M P, Leach A P. Optical time-domain reflectometry:US4823166 A[P]. 1989-04-18.
[58] Sancho J, Chin S, Barrera D, et al. Time-frequency analysis of long fiber Bragg gratings with low reflectivity[J]. Optics Express, 2013, 21(6):7171-7179.
[59] Ricchiuti A L, Sales S. Spot event detection along a large-scale sensor based on ultra-weak fiber Bragg gratings using time-frequency analysis[J]. Applied Optics, 2016, 55(5):1054-1060.
[60] Wang J Q, Li Z Y, Fu X L, et al. High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulsewidth[J]. Optics Express, 2020, 28(11):16045-16056.
[61] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applphyslett, 1981, 39(9):693-695.
[62] 孙艮, 白浩杰, 石玉伦, 等. 光频域反射计的研究进展及应用[J]. 激光与光电子学进展, 2020, 57(5):79-90. Sun G, Bai H J, Shi Y L, et al. Research progress and application of optical frequency domain reflectometer[J]. Laser & Optoelectronics Progress, 2020, 57(5):79-90. (in Chinese)
[63] 李政颖, 孙文丰, 王洪海. 基于光频域反射技术的超弱反射光纤光栅传感技术研究[J]. 光学学报, 2015, 35(8):64-71. Li Z Y, Sun W F, Wang H H. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology[J]. Acta Optica Sinica, 2015, 35(8):64-71. (in Chinese)
[64] Xiang N, Li Z, Gui X, et al. Research on a high-precision calibration method for tunable lasers[J]. Measurement Science and Technology, 2018, 29(3):035201.
[65] Wang C J, Li Z Y, Gui X, et al. Micro-cavity array with high accuracy for fully distributed optical fiber sensing[J]. Journal of Lightwave Technology, 2019, 37(3):927-932.
[66] 蔡永俊. 调频连续波合成孔径雷达成像研究与系统实现[D]. 北京:中国科学院国家空间科学中心, 2016.
[67] Werzinger S, Bergdolt S, Engelbrecht R, et al. Quasi-distributed fiber Bragg grating sensing using stepped incoherent optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 2016, 34(22):5270-5277.
[68] 张纯. 基于调频连续波的弱反射光纤光栅解调系统研究与实现[D]. 武汉:武汉理工大学, 2017.
[69] Wang J Q, Li Z Y, Yang Q, et al. Interrogation of a large-capacity densely spaced fiber Bragg grating array using chaos-based incoherent-optical frequency domain reflectometry[J]. Optics Letters, 2019, 44(21):5202-5205.
[70] 姜德生, 何伟. 光纤光栅传感器的应用概况[J]. 光电子·激光, 2002, 13(4):420-430. Jiang D S, He W. Review of applications for fiber Bragg grating sensors[J]. Journal of Optoelectronics·Laser, 2002, 13(4):420-430. (in Chinese)
[71] Zhang Q H, Xiong Z M. Crack detection of reinforced concrete structures based on BOFDA and FBG sensors[J]. Shock and Vibration, 2018, (8):1-10.
[72] 胡娜, 周祖德, 刘明尧. 基于FBG的机床龙门结构变形检测及重构研究[J]. 机械设计与制造, 2019(6):104-107. Hu N, Zhou Z D, Liu M Y. Research on deformation detection and reconstruction of gantry structure on machine tools based on fiber Bragg grating sensor[J]. Machinery Design & Manufacture, 2019(6):104-107. (in Chinese)
[73] 邹朋. 航空齿轮箱的振动与模态分析研究[D]. 重庆:重庆大学, 2018.
[74] 雷沫枝, 胡国安, 王月华, 等. 航空发动机离心叶轮高阶模态振动故障研究[J]. 振动与冲击, 2019, 38(22):244-250. Lei M Z, Hu G A, Wang Y H, et al. High order mode vibration failure of an aero-engine centrifugal impeller[J]. Journal of Vibration and Shock, 2019, 38(22):244-250. (in Chinese)
[75] Zheng D, Madrigal J, Chen H L, et al. Multicore fiber-Bragg-grating-based directional curvature sensor interrogated by a broadband source with a sinusoidal spectrum[J]. Optics Letters, 2017, 42(18):3710-3713.
[76] Barbarin Y, Lefrancois A, Magne S, et al. Dynamic high pressure measurements using a fiber Bragg grating probe and an arrayed waveguide grating spectrometer[C]//Interferometry XVIII. International Society for Optics and Photonics, 2016, 9960:99600U.
[77] 葛婉宁. 基于FBG传感器的振动检测系统开发与实现[D]. 济南:山东大学, 2017.
[78] 刘小敏, 王彦, 秦楠, 等. 基于C#和FBGA桥梁应变监测解调系统的实现[J]. 光学与光电技术, 2019, 17(4):64-70. Liu X M, Wang Y, Qin N, et al. Realization of bridge strain monitoring demodulation system based on C# and FBGA[J]. Optics & Optoelectronic Technology, 2019, 17(4):64-70. (in Chinese)
[79] Ma L M, Ma C, Wang Y M, et al. High-speed distributed sensing based on ultra weak FBGs and chromatic dispersion[J]. IEEE Photonics Technology Letters, 2016, 28(12):1344-1347.
[80] 李政颖, 孙文丰, 李子墨, 等. 基于色散补偿光纤的高速光纤光栅解调方法[J]. 物理学报, 2015, 64(23):142-146. Li Z Y, Sun W F, Li Z M, et al. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber[J]. Acta Physica Sinica, 2015, 64(23):142-146. (in Chinese)
[81] 刘泉, 王一鸣, 刘司琪, 等. 一种基于分布式反馈激光器的FBG高速解调系统[J]. 光电子·激光, 2015, 26(8):1473-1478. Liu Q, Wang Y M, Liu S Q, et al. A high-speed FBG interrogation system based on DFB laser[J]. Journal of Optoelectronics·Laser, 2015, 26(8):1473-1478.(in Chinese)
[82] Yao Y Q, Li Z Y, Wang Y M, et al. Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser[J]. Sensors, 2017, 17(7):1472.
[83] Tong Y C, Chan L Y, Tsang H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 1997, 33(11):983.
[84] Nakazaki Y, Yamashita S. Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing[J]. Optics Express, 2009, 17(10):8310-8318.
[85] 李政颖, 周祖德, 童杏林, 等. 高速大容量光纤光栅解调仪的研究[J]. 光学学报, 2012, 32(3):60-65. Li Z Y, Zhou Z D, Tong X L, et al. Research of high-speed large-capacity fiber Bragg grating demodulator[J]. Acta Optica Sinica, 2012, 32(3):60-65. (in Chinese)
[86] Huber R, Wojtkowski M, Fujimoto J G. Fourier domain mode locking (FDML):a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 2006, 14(8):3225-3237.
[87] Jung E J, Kim C S, Jeong M Y, et al. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser[J]. Optics Express, 2008, 16(21):16552-16560.
[88] Park J, Kwon Y S, Ko M O, et al. Dynamic fiber Bragg grating strain sensor interrogation based on resonance Fourier domain mode-locked fiber laser[C]//2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP). IEEE:291-292.
[89] Yamaguchi T, Shinoda Y. High-speed vibration measurement by fiber Bragg gratings with Fourier domain mode locking laser[C]//201725th Optical Fiber Sensors Conference (OFS). IEEE, 2017:1-4.
[90] 王一鸣, 胡陈晨, 刘泉, 等. 基于连续扫频光时域反射的全同弱光栅高速解调方法[J]. 物理学报, 2016, 65(20):133-142. Wang Y M, Hu C C, Liu Q, et al. High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry[J]. Acta Physica Sinica, 2016, 65(20):133-142. (in Chinese)
[91] Liu Q, Wang Y M, Li Z Y, et al. High-speed interrogation system of multi-encoding weak FBGs based on FDML wavelength swept laser[J]. Optics & Laser Technology, 2018, 107:54-58.
[92] Xin L P, Li Z Y, Gui X, et al. Surface intrusion event identification for subway tunnels using ultra-weak FBG array based fiber sensing[J]. Optics Express, 2020, 28(5):6794-6805.
[93] Fernández-Ruiz M R, Soto M A, Williams E F, et al. Distributed acoustic sensing for seismic activity monitoring[J]. APL Photonics, 2020, 5(3):030901.
[94] Wang C, Shang Y, Liu X H, et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings[J]. Optics Express, 2015, 23(22):29038-29046.
[95] 张英东, 黄俊斌, 顾宏灿, 等. 弱反射光纤光栅水听器水声探测机理研究[J]. 舰船电子工程, 2018, 38(12):180-184. Zhang Y D, Huang J B, Gu H C, et al. Research on underwater acoustic detection mechanism of weak reflective fiber Bragg grating hydrophone[J]. Ship Electronic Engineering, 2018, 38(12):180-184. (in Chinese)
[96] Ma P F, Liu K, Jiang J F, et al. Probabilistic event discrimination algorithm for fiber optic perimeter security systems[J]. Journal of Lightwave Technology, 2018, 36(11):2069-2075
[97] Bian P, Wu Y, Jia B, et al. Dual-wavelength Sagnac interferometer as perimeter sensor with Rayleigh backscatter rejection[J]. Optical Engineering, 2014, 53(4):044111.
[98] Chen Q, Jin C, Bao Y, et al. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer[J]. Optics Express, 2014, 22(3):2167-2173.
[99] Kondrat M, Szustakowski M, Pa A N, et al. A Sagnac-Michelson fibre optic interferometer:signal processing for disturbance localization[J]. Opto-Electronics Review, 2007, 15(3):127-132.
[100] Jiang L H, Yang R Y. Identification technique for the intrusion of airport enclosure based on double Mach-Zehnder interferometer[J]. Journal of Computers, 2012, 7(6):1453-1459.
[101] Fang G S, Xu T W, Feng S W, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 2015, 33(13):2811-2816
[102] Koyamada Y, Imahama M, Kubota K, et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 2009, 27(9):1142-1146.
[103] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science & Technology, 2013, 24(8):085204.
[104] Tong Y H, Li Z Y, Wang J Q, et al. High-speed Mach-Zehnder-OTDR distributed optical fiber vibration sensor using medium-coherence laser[J]. Photonic Sensors, 2018, 8(3):203-212.
[105] 柏林厚, 廖延彪, 张敏, 等. 干涉型光纤传感器相位生成载波解调方法改进与研究[J]. 光子学报, 2005, 34(9):1324-1327. Bai L H, Liao Y B, Zhang M, et al. The improvement on PGC demodulation method based on optical fiber interferometer sensors[J]. Acta Photonica Sinica, 2005, 34(9):1324-1327. (in Chinese)
[106] 蔡海文, 叶青, 王照勇, 等. 分布式光纤声波传感技术研究进展[J]. 应用科学学报, 2018, 36(1):41-58. Cai H W, Ye Q, Wang Z Y, et al. Progress in research of distributed fiber acoustic sensing techniques[J]. Journal of Applied Sciences, 2018, 36(1):41-58. (in Chinese)
[107] Nishiguchi K I. Phase unwrapping for fiber-optic distributed acoustic sensing[C]//Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, 2016:81-87.
[108] 王永红, 陈维杰, 钟诗民, 等. 相位解包裹技术及应用研究进展[J]. 测控技术, 2018, 37(12):1-7, 16. Wang Y H, Chen W J, Zhong S M, et al. Research progress in phase unwrapping technology and its applications[J]. Measurement & Control Technology, 2018, 37(12):1-7, 16.(in Chinese)
[109] 张冰, 王葵如, 颜玢玢, 等. 基于双波长和3×3光纤耦合器的干涉测量相位解卷绕方法[J]. 光学学报, 2018, 38(4):232-239. Zhang B, Wang K R, Yan F F, et al. Phase unwrapping method based on dual wavelength and 3×3 fiber coupler with interferometric measurement[J]. Acta Optica Sinica, 2018, 38(4):232-239. (in Chinese)
[110] Hong Z, Fang W, Lalor M J, et al. Spatiotemporal phase unwrapping and its application in fringe projection fiber optic phase-shifting profilometry[J]. Optical Engineering, 1999, 39:1958-1964.
[111] 郝红星, 于荣欢, 张喜涛. 质量图引导的干涉合成孔径雷达图像相位解缠算法[J]. 装备学院学报, 2017, 28(3):8-13. Hao H X, Yu R H, Zhang X T. A phase unwrapping method of interferometric SAR phase image based on quality map guided model[J]. Journal of Equipment Academy, 2017, 28(3):8-13. (in Chinese)
[112] Luo X M, Li H T, Dong Z L, et al. InSAR phase unwrapping based on square-root cubature Kalman filter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4627-4641.
[113] Palacios F, Gonçalves E, Ricardo J, et al. Adaptive filter to improve the performance of phase-unwrapping in digital holography[J]. Optics Communications, 2004, 238(4/5/6):245-251.
[114] 李盛林, 邓小芳, 王华英. 数字全息显微术中三种相位展开算法的比较研究[J]. 光学技术, 2020, 46(1):56-60. Li S L, Deng X F, Wang H Y. Comparison of three kinds of phase unwrapping algorithm in digital holographic microscopy[J]. Optical Technique, 2020, 46(1):56-60. (in Chinese)
[115] Fu X L, Wu J, Li Z Y, et al. Fiber-based large dynamic range vibration sensing with dualwavelength phase unwrapping[J]. Journal of Lightwave Technology, 2019, 37(24):6090-6096.
[116] 李政颖, 吴军, 傅雪蕾, 等. 基于双波长回归分析的光纤振动传感器相位解调装置与方法:109781240B[P]. 2021-03-09.
[117] Li Z Y, Tong Y H, Fu X L, et al. Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings[J]. Optics Express, 2018, 26(13):17437-17446.
[118] Huang J T, Zhang W T, Huang W H, et al. High-resolution fiber optic seismic sensor array for intrusion detection of subway tunnel[C]//Asia Communications and Photonics Conference (ACP). IEEE, 2018:1-3.
[119] Jiang D S, Zhou C M, Yang M H, et al. Research on optic fiber sensing engineering technology[C]//International Conference on Optical Fiber Sensors, 2012, 8421:84210J.
[120] Nordmark A. Fire and life safety for underground facilities:present status of fire and life safety principles related to underground facilities:ITA working group 4, "subsurface planning"[J]. Tunnelling and Underground Space Technology, 1998, 13(3):217-269.
[121] Ye X W, Ni Y Q, Yin J H. Safety monitoring of railway tunnel construction using FBG sensing technology[J]. Advances in Structural Engineering, 2013, 16(8):1401-1409.
[122] Zhu F D, Zhang D S, Fan P, et al. Non-uniform strain measurement along a fiber Bragg grating using optical frequency domainreflectometry[J]. Chinese Optics Letters, 2013, 11(10):100603.
[123] Wada D, Murayama H, Igawa H, et al. Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber Bragg grating based on optical frequency domain reflectometry[J]. Smart Materials and Structures, 2011, 20(8):085028.
[124] Igawa H, Ohta K, Kasai T, et al. Distributed measurements with a long gauge FBG sensor using optical frequency domain reflectometry[J]. Transactions of the Japan Society of Mechanical Engineers, 2008, 73(724):1912-1920.
[125] Wada D C, Igawa H, Kasai T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique[J]. Applied Optics, 2016, 55(25):6953-6959.
[126] Igawa H, Murayama H, Nakamura T, et al. Measurement of distributed strain and load identification using 1500 mm gauge length FBG and optical frequency domain reflectometry[C]//International Conference on Optical Fibre Sensors:International Society for Optics and Photonics, 2009, 7503:75035I.
[127] Gui X, Li Z Y, Fu X L, et al. High-density distributed crack tip sensing system using dense ultra-short FBG sensors[J]. Sensors, 2019, 19(7):1702.
[128] Yang M H, Bai W, Guo H Y, et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 2016, 6(1):26-41.
[129] Yang M H, Li C L, Mei Z H, et al. Thousands of fiber grating sensor array based on draw tower:a new platform for fiber-optic sensing[J]. Optical Fiber Sensors, 2018:FB6.
[130] Gan W B, Li S, Li Z Y, et al. Identification of ground intrusion in underground structures based on distributed structural vibration detected by ultra-weak FBG sensing technology[J]. Sensors, 2019, 19(9):2160.
[131] Nan Q, Li S, Yao Y, et al. A novel monitoring approach for train tracking and incursion detection in underground structures based on ultra-weak FBG sensing array[J]. Sensors, 2019, 19(12):2666.
[132] Shang Y, Yang Y H, Wang C, et al. Quasi-distributed acoustic sensing based on identical low-reflective fiber Bragg gratings[J]. Measurement Science and Technology, 2017, 28(1):015202.
[133] Li Y, Qian L, Zhou C M, et al. Multiple-octave-spanning vibration sensing based on simultaneous vector demodulation of 499 fiZeau interference signals from identical ultra-weak fiber Bragg gratings over 2.5 km[J]. Sensors, 2018, 18(2):210.
[134] Zhou C M, Pang Y D, Qian L, et al. Demodulation of a hydroacoustic sensor array of fiber interferometers based on ultra-weak fiber Bragg grating reflectors using a self-referencing signal[J]. Journal of Lightwave Technology, 2019, 37(11):2568-2576.
[135] Wang C, Shang Y, Zhao W A, et al. Distributed acoustic sensor using broadband weak FBG array for large temperature tolerance[J]. IEEE Sensors Journal, 2018, 18(7):2796-2800.
[136] Li C, Tang J, Jiang Y, et al. An enhanced distributed acoustic sensor with large temperature tolerance based on ultra-weak fiber Bragg grating array[J]. IEEE Photonics Journal, 2020, 12(4):1-11.
[137] Li C, Tang J, Cheng C, et al. Simultaneously distributed temperature and dynamic strain sensing based on a hybrid ultra-weak fiber grating array[J]. Optics Express, 2020, 28(23):34309-34319.
文章导航

/