[1] Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using syndrome-trellis codes [J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 920-935.
[2] Holub V, Fridrich J. Digital image steganography using universal distortion [C]//1st ACM Workshop on Information Hiding and Multimedia Security, 2013: 59-68.
[3] Li B, Wang M, Huang J W, et al. A new cost function for spatial image steganography [C]//2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014: 4206-4210.
[4] Li B, Wang M, Li X L, et al. A strategy of clustering modification directions in spatial image steganography [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(9): 1905-1917.
[5] Denemark T, Fridrich J. Steganography with multiple JPEG images of the same scene [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(10): 2308-2319.
[6] Wang Z C, Qian Z X, Zhang X P, et al. On improving distortion functions for JPEG steganography [J]. IEEE Access, 2018, 6: 74917-74930.
[7] Tang W X, Li B, Tan S Q, et al. CNN-based adversarial embedding for image steganography [J]. IEEE Transactions on Information Forensics and Security, 2019, 14(8): 2074-2087.
[8] Bernard S, Bas P, Klein J, et al. Explicit optimization of min max steganographic game [J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 812-823.
[9] Zhang Y, Luo X Y, Guo Y Q, et al. Multiple robustness enhancements for image adaptive steganography in lossy channels [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(8): 2750-2764.
[10] Tao J Y, Li S, Zhang X P, et al. Towards robust image steganography [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(2): 594-600.
[11] Li S, Zhang X P. Toward construction-based data hiding: from secrets to fingerprint images [J]. IEEE Transactions on Image Processing, 2019, 28(3): 1482-1497.
[12] Zhang X, Peng F, Long M. Robust coverless image steganography based on DCT and LDA topic classification [J]. IEEE Transactions on Multimedia, 2018, 20(12): 3223-3238.
[13] Hu D H, Wang L, Jiang W J, et al. A novel image steganography method via deep convolutional generative adversarial networks [J]. IEEE Access, 2018, 6: 38303-38314.
[14] Fridrich J, Kodovsky J. Rich models for steganalysis of digital images [J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868-882.
[15] Holub V, Fridrich J. Low-complexity features for JPEG steganalysis using undecimated DCT [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(2): 219-228.
[16] Boroumand M, Fridrich J. Applications of explicit non-linear feature maps in steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2018, 13(4): 823-833.
[17] Denemark T D, Boroumand M, Fridrich J. Steganalysis features for content-adaptive JPEG steganography [J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1736-1746.
[18] Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media [J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 432-444.
[19] Ker A D, Pevný T. A new paradigm for steganalysis via clustering [C]//Media Watermarking, Security, and Forensics III. SPIE, 2011, 7880: 312-324.
[20] Ker A D, Pevný T. The steganographer is the outlier: realistic large-scale steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2014, 9(9): 1424-1435.
[21] Li F Y, Wu K, Lei J S, et al. Steganalysis over large-scale social networks with high-order joint features and clustering ensembles [J]. IEEE Transactions on Information Forensics and Security, 2016, 11(2): 344-357.
[22] Xu G S, Wu H Z, Shi Y Q. Structural design of convolutional neural networks for steganalysis [J]. IEEE Signal Processing Letters, 2016, 23(5): 708-712.
[23] Ye J, Ni J Q, Yi Y. Deep learning hierarchical representations for image steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2545-2557.
[24] Zeng J S, Tan S Q, Li B, et al. Large-scale JPEG image steganalysis using hybrid deeplearning framework [J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1200-1214.
[25] Li B, Wei W H, Ferreira A, et al. ResT-Net: diverse activation modules and parallel subnets-based CNN for spatial image steganalysis [J]. IEEE Signal Processing Letters, 2018, 25(5): 650-654.
[26] You W K, Zhang H, Zhao X F. A siamese CNN for image steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 291-306.
[27] Zeng J S, Tan S Q, Liu G Q, et al. WISERNet: wider separate-then-Reunion network for steganalysis of color images [J]. IEEE Transactions on Information Forensics and Security, 2019, 14(10): 2735-2748.
[28] Chen M, Boroumand M, Fridrich J. Reference channels for steganalysis of images with convolutional neural networks [C]//ACM Workshop on Information Hiding and Multimedia Security, 2019: 188-197.
[29] Zhang R, Zhu F, Liu J Y, et al. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1138-1150.
[30] Wu S T, Zhong S H, Liu Y. A novel convolutional neural network for image steganalysis with shared normalization [J]. IEEE Transactions on Multimedia, 2020, 22(1): 256-270.
[31] Boroumand M, Chen M, Fridrich J. Deep residual network for steganalysis of digital images [J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1181-1193.
[32] Ni D N, Feng G R, Shen L Q, et al. Selective ensemble classification of image steganalysis via deep Q network [J]. IEEE Signal Processing Letters, 2019, 26(7): 1065-1069.
[33] Singh B, Sur A, Mitra P. Steganalysis of digital images using deep fractal network [J]. IEEE Transactions on Computational Social Systems, 2021, 8(3): 599-606.
[34] Jia J, Luo M, Liu J S, et al. Multiperspective progressive structure adaptation for JPEG steganography detection across domains [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3660-3674.
[35] Su A, Zhao X. Arbitrary-sized JPEG steganalysis based on fully convolutional network [C]//Digital Forensics and Watermarking: 20th International Workshop, Revised Selected Papers. Springer, 2021: 197.
[36] Jia J, Zhai L M, Ren W X, et al. Transferable heterogeneous feature subspace learning for JPEG mismatched steganalysis [J]. Pattern Recognition, 2020, 100: 107105.
[37] Yang L R, Men M, Xue Y M, et al. Transfer subspace learning based on structure preservation for JPEG image mismatched steganalysis [J]. Signal Processing: Image Communication, 2021, 90: 116052.
[38] Qian Y L, Dong J, Wang W, et al. Learning representations for steganalysis from regularized CNN model with auxiliary tasks [C]//2015 International Conference on Communications, Signal Processing, and Systems. Springer, 2016: 629-637.
[39] Ozcan S, Mustacoglu A F. Transfer learning effects on image steganalysis with pre-trained deep residual neural network model [C]//2018 IEEE International Conference on Big Data. IEEE, 2018: 2280-2287.
[40] Feng C Y, Kong X W, Li M, et al. Contribution-based feature transfer for JPEG mismatched steganalysis [C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 500-504.