应用科学学报 ›› 2024, Vol. 42 ›› Issue (5): 723-732.doi: 10.3969/j.issn.0255-8297.2024.05.001
• 信号与信息处理 • 上一篇
王子驰1, 李斌2, 冯国瑞1, 张新鹏1
收稿日期:
2022-11-23
发布日期:
2024-09-29
通信作者:
王子驰,硕导,研究方向为人工智能安全、信息隐藏等。E-mail:wangzichi@shu.edu.cn
E-mail:wangzichi@shu.edu.cn
基金资助:
WANG Zichi1, LI Bin2, FENG Guorui1, ZHANG Xinpeng1
Received:
2022-11-23
Published:
2024-09-29
摘要: 数字隐写是机密信息安全传递的重要方式,将机密信息隐藏于普通多媒体数据(图像或视音频)中可以实现隐蔽传输。而发现机密信息的隐蔽传输可采用隐写分析技术,隐写分析根据隐写引起的载体数据统计异常来判断多媒体数据是否含有秘密信息。近年来,隐写与隐写分析在相互对抗中不断进步与发展。随着社交网络的兴起,数字图像已成为社交媒介之一并广泛传播。本文以数字图像为例,梳理了近十余年数字图像隐写分析研究的发展现状;综述了传统隐写分析与深度学习隐写分析;探讨了各类方法面临的挑战,并展望了隐写分析的发展趋势。
中图分类号:
王子驰, 李斌, 冯国瑞, 张新鹏. 数字图像隐写分析综述[J]. 应用科学学报, 2024, 42(5): 723-732.
WANG Zichi, LI Bin, FENG Guorui, ZHANG Xinpeng. Review of Steganalysis for Digital Images[J]. Journal of Applied Sciences, 2024, 42(5): 723-732.
[1] Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using syndrome-trellis codes [J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 920-935. [2] Holub V, Fridrich J. Digital image steganography using universal distortion [C]//1st ACM Workshop on Information Hiding and Multimedia Security, 2013: 59-68. [3] Li B, Wang M, Huang J W, et al. A new cost function for spatial image steganography [C]//2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014: 4206-4210. [4] Li B, Wang M, Li X L, et al. A strategy of clustering modification directions in spatial image steganography [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(9): 1905-1917. [5] Denemark T, Fridrich J. Steganography with multiple JPEG images of the same scene [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(10): 2308-2319. [6] Wang Z C, Qian Z X, Zhang X P, et al. On improving distortion functions for JPEG steganography [J]. IEEE Access, 2018, 6: 74917-74930. [7] Tang W X, Li B, Tan S Q, et al. CNN-based adversarial embedding for image steganography [J]. IEEE Transactions on Information Forensics and Security, 2019, 14(8): 2074-2087. [8] Bernard S, Bas P, Klein J, et al. Explicit optimization of min max steganographic game [J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 812-823. [9] Zhang Y, Luo X Y, Guo Y Q, et al. Multiple robustness enhancements for image adaptive steganography in lossy channels [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(8): 2750-2764. [10] Tao J Y, Li S, Zhang X P, et al. Towards robust image steganography [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(2): 594-600. [11] Li S, Zhang X P. Toward construction-based data hiding: from secrets to fingerprint images [J]. IEEE Transactions on Image Processing, 2019, 28(3): 1482-1497. [12] Zhang X, Peng F, Long M. Robust coverless image steganography based on DCT and LDA topic classification [J]. IEEE Transactions on Multimedia, 2018, 20(12): 3223-3238. [13] Hu D H, Wang L, Jiang W J, et al. A novel image steganography method via deep convolutional generative adversarial networks [J]. IEEE Access, 2018, 6: 38303-38314. [14] Fridrich J, Kodovsky J. Rich models for steganalysis of digital images [J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868-882. [15] Holub V, Fridrich J. Low-complexity features for JPEG steganalysis using undecimated DCT [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(2): 219-228. [16] Boroumand M, Fridrich J. Applications of explicit non-linear feature maps in steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2018, 13(4): 823-833. [17] Denemark T D, Boroumand M, Fridrich J. Steganalysis features for content-adaptive JPEG steganography [J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1736-1746. [18] Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media [J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 432-444. [19] Ker A D, Pevný T. A new paradigm for steganalysis via clustering [C]//Media Watermarking, Security, and Forensics III. SPIE, 2011, 7880: 312-324. [20] Ker A D, Pevný T. The steganographer is the outlier: realistic large-scale steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2014, 9(9): 1424-1435. [21] Li F Y, Wu K, Lei J S, et al. Steganalysis over large-scale social networks with high-order joint features and clustering ensembles [J]. IEEE Transactions on Information Forensics and Security, 2016, 11(2): 344-357. [22] Xu G S, Wu H Z, Shi Y Q. Structural design of convolutional neural networks for steganalysis [J]. IEEE Signal Processing Letters, 2016, 23(5): 708-712. [23] Ye J, Ni J Q, Yi Y. Deep learning hierarchical representations for image steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2545-2557. [24] Zeng J S, Tan S Q, Li B, et al. Large-scale JPEG image steganalysis using hybrid deeplearning framework [J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1200-1214. [25] Li B, Wei W H, Ferreira A, et al. ResT-Net: diverse activation modules and parallel subnets-based CNN for spatial image steganalysis [J]. IEEE Signal Processing Letters, 2018, 25(5): 650-654. [26] You W K, Zhang H, Zhao X F. A siamese CNN for image steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 291-306. [27] Zeng J S, Tan S Q, Liu G Q, et al. WISERNet: wider separate-then-Reunion network for steganalysis of color images [J]. IEEE Transactions on Information Forensics and Security, 2019, 14(10): 2735-2748. [28] Chen M, Boroumand M, Fridrich J. Reference channels for steganalysis of images with convolutional neural networks [C]//ACM Workshop on Information Hiding and Multimedia Security, 2019: 188-197. [29] Zhang R, Zhu F, Liu J Y, et al. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1138-1150. [30] Wu S T, Zhong S H, Liu Y. A novel convolutional neural network for image steganalysis with shared normalization [J]. IEEE Transactions on Multimedia, 2020, 22(1): 256-270. [31] Boroumand M, Chen M, Fridrich J. Deep residual network for steganalysis of digital images [J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1181-1193. [32] Ni D N, Feng G R, Shen L Q, et al. Selective ensemble classification of image steganalysis via deep Q network [J]. IEEE Signal Processing Letters, 2019, 26(7): 1065-1069. [33] Singh B, Sur A, Mitra P. Steganalysis of digital images using deep fractal network [J]. IEEE Transactions on Computational Social Systems, 2021, 8(3): 599-606. [34] Jia J, Luo M, Liu J S, et al. Multiperspective progressive structure adaptation for JPEG steganography detection across domains [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3660-3674. [35] Su A, Zhao X. Arbitrary-sized JPEG steganalysis based on fully convolutional network [C]//Digital Forensics and Watermarking: 20th International Workshop, Revised Selected Papers. Springer, 2021: 197. [36] Jia J, Zhai L M, Ren W X, et al. Transferable heterogeneous feature subspace learning for JPEG mismatched steganalysis [J]. Pattern Recognition, 2020, 100: 107105. [37] Yang L R, Men M, Xue Y M, et al. Transfer subspace learning based on structure preservation for JPEG image mismatched steganalysis [J]. Signal Processing: Image Communication, 2021, 90: 116052. [38] Qian Y L, Dong J, Wang W, et al. Learning representations for steganalysis from regularized CNN model with auxiliary tasks [C]//2015 International Conference on Communications, Signal Processing, and Systems. Springer, 2016: 629-637. [39] Ozcan S, Mustacoglu A F. Transfer learning effects on image steganalysis with pre-trained deep residual neural network model [C]//2018 IEEE International Conference on Big Data. IEEE, 2018: 2280-2287. [40] Feng C Y, Kong X W, Li M, et al. Contribution-based feature transfer for JPEG mismatched steganalysis [C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 500-504. |
[1] | 王娜, 朱会娟, 宋香梅, 冯霞. 一种基于领域自适应的智能合约安全分析框架[J]. 应用科学学报, 2024, 42(4): 585-597. |
[2] | 李子杰, 张姝, 欧阳昭相, 王俊, 吴迪. 基于场因子分解的xDeepFM推荐模型[J]. 应用科学学报, 2024, 42(3): 513-524. |
[3] | 苑紫烨, 邱宝林, 叶妤, 温文, 化定丽, 张玉书. 面向编码伪装的鲁棒无载体图像隐写方法[J]. 应用科学学报, 2024, 42(3): 469-485. |
[4] | 沈坤烨, 周晓飞, 费晓波, 陈雨中, 张继勇, 颜成钢. 基于边缘感知深度残差网络的带钢表面缺陷检测[J]. 应用科学学报, 2023, 41(6): 978-988. |
[5] | 张春森, 朱江乐, 张学芬, 刘旭东, 史书. 融合自注意力机制与生成对抗网络的DEM空洞填充[J]. 应用科学学报, 2023, 41(5): 789-800. |
[6] | 黄显培, 孟庆祥. 基于多特征卷积神经网络的哨兵二号影像地物分类[J]. 应用科学学报, 2023, 41(5): 766-776. |
[7] | 魏洁玲, 马秀丽, 金彦亮, 王瑞. 基于VPN通道下的加密流量分类算法[J]. 应用科学学报, 2023, 41(4): 646-656. |
[8] | 刘钊志, 赵琰. 一种图像块旋转的马赛克拼图伪装隐写[J]. 应用科学学报, 2023, 41(2): 311-325. |
[9] | 萧晓彤, 丁建伟, 张琪. 基于局部和全局梯度上升的分段后门防御[J]. 应用科学学报, 2023, 41(2): 218-227. |
[10] | 刘雅蕾, 和红杰, 陈帆, 刘卓华. 基于水印神经网络的可溯源DNN模型保护方法[J]. 应用科学学报, 2023, 41(2): 183-196. |
[11] | 曾静, 李莹, 戚小莎, 吉根林. 多层记忆增强生成对抗网络二次预测的视频异常检测方法[J]. 应用科学学报, 2023, 41(1): 80-94. |
[12] | 王婷, 王娜, 崔运鹏, 刘娟. 基于深度学习的医疗电子数据特征学习方法[J]. 应用科学学报, 2023, 41(1): 41-54. |
[13] | 姜晓勇, 李忠义, 黄朗月, 彭孟乐, 徐书杨. 神经网络剪枝技术研究综述[J]. 应用科学学报, 2022, 40(5): 838-849. |
[14] | 罗长银, 陈学斌, 宋尚文, 张淑芬, 刘之瑜. 基于深度学习的联邦集成算法[J]. 应用科学学报, 2022, 40(3): 493-510. |
[15] | 倪翠, 王朋, 孙浩, 李倩. 一种基于四叉树划分的改进ORB算法[J]. 应用科学学报, 2022, 40(2): 266-278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||