[1] Yuan Y, Wang F Y. Blockchain and cryptocurrencies: model, techniques, and applications [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(9): 1421-1428. [2] Wood G. Ethereum: a secure decentralised generalised transaction ledger [J]. Ethereum Project Yellow Paper, 2014, 151: 1-32. [3] Androulaki E, Barger A, Bortnikov V, et al. Hyperledger Fabric: a distributed operating system for permissioned blockchains [C]//13th EuroSys Conference, 2018: 1-15. [4] Alomar A, Bhuiyan M Z A, Basu A, et al. Privacy-friendly platform for healthcare data in cloud based on blockchain environment [J]. Future Generation Computer Systems, 2019, 95: 511-521. [5] Schär F. Decentralized finance: on blockchain- and smart contract-based financial markets [J]. Federal Reserve Bank of St. Louis Review, 2021, 103(2): 153-174. [6] Wan Z, Guan Z, Cheng X. PRIDE: a private and decentralized usage-based insurance using blockchain [C]//IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, 2018: 1349-1354. [7] Liu Z G, Qian P, Wang X, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection [J]. IEEE Transactions on Knowledge Data Engineering, 2023, 35(2): 1296-1310. [8] He D J, Deng Z, Zhang Y X, et al. Smart contract vulnerability analysis and security audit [J]. IEEE Network, 2020, 34(5): 276-282; [9] Zhao L T, Zhong L, Liu J D, et al. A regulatable mechanism for transacting data assets [J]. IEEE Internet of Things Journal, 2023, 10(24): 201615-21632. [10] Wang W, Song J J, Xu G Q, et al. ContractWard: automated vulnerability detection models for Ethereum smart contracts [J]. IEEE Transactions on Network Science Engineering, 2020, 8(2): 1133-1144. [11] Kalra S, Goel S, Dhawan M, et al. ZEUS: analyzing safety of smart contracts [C]//Network and Distributed System Security Symposium, 2018: 1-12. [12] Jiang B, Liu Y, Chan W K. Contractfuzzer: fuzzing smart contracts for vulnerability detection [C]//33rd ACM/IEEE International Conference on Automated Software Engineering, 2018: 259-269. [13] Luu L, Chu D H, Olickel H, et al. Making smart contracts smarter [C]//ACM SIGSAC Conference on Computer and Communications Security, 2016: 254-269. [14] Sato T, Himura Y. Smart-contract based system operations for permissioned blockchain [C]// 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 2018: 1-6. [15] Feng S Y, Gangal V, Wei J, et al. A survey of data augmentation approaches for NLP [DB/OL]. 2021[2024-01-02]. https://arxiv.org/abs/2105.03075v1. [16] 邓枭, 叶蔚, 谢睿, 等. 基于深度学习的源代码缺陷检测研究综述[J]. 软件学报, 2023, 34(2): 625- 654. Deng X, Ye W, Xie R, et al. Survey of source code bug detection based on deep learning [J]. Journal of Software, 2023, 34(2): 625-654. (in Chinese) [17] Wu H J, Zhang Z, Wang S W, et al. Peculiar smart contract vulnerability detection based on crucial data flow graph and pre-training techniques [C]//IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), 2021: 378-389. [18] 钱鹏, 刘振广, 何钦铭, 等. 智能合约安全漏洞检测技术研究综述[J]. 软件学报, 2021, 33(8): 3059- 3085. Qian P, Liu Z G, He Q M, et al. Smart contract vulnerability detection technique: a survey [J]. Journal of Software, 2021, 33(8): 3059-3085. (in Chinese) [19] Hildenbrandt E, Saxena M, Rodrigues N, et al. KEVM: a complete formal semantics of the Ethereum virtual machine [C]//IEEE 31st Computer Security Foundations Symposium (CSF), 2018: 204-217. [20] 胡甜媛, 李泽成, 李必信, 等. 智能合约的合约安全和隐私安全研究综述[J]. 计算机学报, 2021, 44(12): 2485-2514. Hu T Y, Li Z C, Li B X, et al. Contractual security and privacy secyrity of smart contract: a system mapping study [J]. Chinese Journal of Computers, 2021, 44(12): 2485-2514. (in Chinese) [21] Wüstholz V, Christakis M. Harvey: a greybox fuzzer for smart contracts [C]//28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020: 1398-1409. [22] Baldoni R, Coppa E, D’elia D C, et al. A survey of symbolic execution techniques [J]. ACM Computing Surveys, 2018, 51(3): 1-39. [23] Feist J, Grieco G, Groce A. Slither: a static analysis framework for smart contracts [C]//2nd International Workshop on Emerging Trends in Software Engineering for Blockchain, 2019: 8-15. [24] Mueller B. A framework for bug hunting on the ethereum blockchain [EB/OL]. 2017[2024- 01-02]. https://github.com/ConsenSys/mythril. [25] Sharifani K, Amini M. Machine learning and deep learning: a review of methods and applications [J]. World Information Technology and Engineering Journal, 2023, 10(7): 3897-3904. [26] Hu H, Bai Q, Xu Y. SCSGuard deep scam detection for ethereum smart contracts [C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2022: 1-6. [27] Zhuang Y, Liu Z G, Qian P, et al. Smart contract vulnerability detection using graph neural network [C]//Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021: 3283-3290. [28] Zou W, Lo D, Kochhar P S, et al. Smart contract development challenges and opportunities [J]. IEEE Transactions on Software Engineering, 2019, 47(10): 2084-2106. [29] Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge Data Engineering, 2009, 22(10): 1345-1359. [30] Farahani A, Voghoei S, Rasheed K, et al. A brief review of domain adaptation [DB/OL]. 2020[2024-01-02]. https://arxiv.org/abs/2010.03978. [31] Goodfellow I, Pouget Abadie J, Mirza M, et al. Generative adversarial nets [J]. Communications of the ACM, 2020, 63(11): 139-144. [32] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [DB/OL]. 2023[2024-01-02]. https://arxiv.org/abs/1706.03762. [33] Kingma D P, Ba J. Adam: a method for stochastic optimization[DB/OL]. 2017[2024-01-02]. https://arxiv.org/abs/1412.6980v6. [34] Abdelaziz T, Hobor A. Smart learning to find dumb contracts [C]//32nd USENIX Security Symposium, 2023: 1775-1792. |