收稿日期: 2017-05-24
网络出版日期: 2018-01-31
基金资助
国家自然科学基金面上项目(No.61575050);国家重点研发计划“政府间国际科技创新合作”重点专项(No.2016YFE0126500);黑龙江省自然科学基金重点项目(No.ZD2016012);教育部111引智基地项目(No.B13015)资助
Tapered Optical Fiber Sensing Technology
Received date: 2017-05-24
Online published: 2018-01-31
拉锥光纤传感技术作为一种新兴的传感技术,在电力、石油化工、生化、航空航天、环保、国防等领域有着重要的应用价值并逐渐成为当前国际上的研究热点之一.与普通光纤相比,拉锥光纤的模场直径为微米或纳米量级,极大地增强了光在光纤中传输时的倏逝场,从而显著提高此类光纤传感器的灵敏度及响应速度,缩小了光纤传感器的尺寸,使其在传感应用中更具优势.该文分析并讨论了拉锥光纤传感器的理论基础、关键技术及相关应用.主要内容包括:1)阐述了微米光纤耦合传感器的原理、制备工艺及折射率和温度传感特性.2)讨论了单模-多模-单模及单模-拉锥多模-单模光纤结构的传感原理并实现了一种基于单模-拉锥多模-单模的高灵敏度折射率传感器.3)为拓展拉锥光纤传感器的应用范围并提高其空间分辨率,发展了一种半拉锥光纤传感器微探头.4)介绍了拉锥光纤在光通信及微操纵等方面的应用.
余吉波, 王先帆, 杨文蕾, 王鹏飞 . 拉锥光纤传感技术[J]. 应用科学学报, 2018 , 36(1) : 148 -175 . DOI: 10.3969/j.issn.0255-8297.2018.01.007
As a novel sensing technology, tapered optical fiber sensing technology has attracted much more attention due to its advantages in many sensing related applications, such as sensing in electricity, petrochemical industry, biochemistry, aerospace, environmental protection and national defense. Compared with the conventional optical fiber based sensors, tapered optical fiber sensing devices offer a number of outstanding optical properties, including fast response, scale in micro/nano meters, strong confinement, large evanescent field and high sensitivity. In this chapter the following parts are presented:1) the principles, fabrication process, refractive index and temperature sensing characteristics based on microfiber coupler sensors were reviewed; 2) the sensing principles of singlemode-multimode-singlemode (SMS) fiber structure and singlemode-tapered multimode-singlemode (STMS) fiber structure were discussed and their applications on refractive index and temperature sensing were presented; 3) a multimode interference halftapered optical fiber probe based sensors were demonstrated for temperature and refractive index sensing; 4) Finally tapered optical fiber based devices can also be used for optical telecommunications and micromanipulation applications.
[1] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968):816-819.
[2] Richardson D J, Koukharenko E, Xu F, Koizumi F, Murugan G S. Optical fiber nanowires and microwires:fabrication and applications[J]. Advances in Optics & Photonics, 2009, 1(1):107-161.
[3] Guo X, Tong L. Supported microfiber loops for optical sensing[J]. Optics Express, 2008, 16(19):14429-14434.
[4] Hanumegowda N M, Stica C J, Patel B C, White I, Fan X. Refractometric sensors based on microsphere resonators[J]. Applied Physics Letters, 2005, 87(20):4057.
[5] Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator[J]. Applied Physics Letters, 2008, 92(10):101126.
[6] Verma R K, Sharma A K, Gupta B. Surface plasmon resonance based tapered fiber optic sensor with different taper profiles[J]. Optics Communications, 2008, 281(6):1486-1491.
[7] Jung Y, Brambilla G, Richardson D J. Comparative study of the effective single mode operational bandwidth in sub-wavelength optical wires and conventional single-mode fibers[J]. Optics express, 2009, 17(19):16619-16624.
[8] Liu Z H, Guo C K, Yang J, Yuan L B. Tapered fiber optical tweezers for microscopic particle trapping:fabrication and application[J]. Optics Express, 2006, 14(25):12510-12516.
[9] Sarkissian R, Farrell S, O'Brien J D. Spectroscopy of a tapered-fiber photonic crystal waveguide coupler[J]. Optics Express, 2009, 17(13):10738-10747.
[10] Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to single molecules[J]. Nature Methods, 2008, 5(7):591-596.
[11] Jung Y, Brambilla G, Richardson D J. Optical microfiber coupler for broadband singlemode operation[J]. Massachusetts:Optics Express Cambrige, 2009, 17(7):5273-5278.
[12] Okamoto K. Fundamentals of optical waveguides[M]. Massachusetts:Academic Press Cambrige, 2010.
[13] Payne F, Hussey C, Yataki M. Polarisation analysis of strongly fused and weakly fused tapered couplers[J]. Electronics Letters, 1985, 21(13):561-563.
[14] Xu F, Horak P, Brambilla G. Optimized design of microcoil resonators[J]. Journal of Lightwave Technology, 2007, 25(6):1561-1567.
[15] Sumetsky M. Optical fiber microcoil resonator[J]. Optics Express, 2004, 12(10):2303-2316.
[16] Bo L, Wang P, Semenova Y, Farrell G. High sensitivity fiber refractometer based on an optical microfiber coupler[J]. IEEE Photonics Technology Letters, 2013, 25(3):228-230.
[17] Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotapers[J]. Optics Express, 2004, 12(10):2258-2263.
[18] Birks T A, Li Y W. The shape of fiber tapers[J]. Journal of Lightwave Technology, 1992, 10(4):432-438.
[19] Wang P, Ding M, Brambilla G, Semenova Y, Wu Q, Farrell G. High temperature performance of an optical microfibre coupler and its potential use as a sensor[J]. Electronics Letters, 2012, 48(5):283-284.
[20] Men L, Lu P, Chen Q. A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement[J]. Journal of Applied Physics, 2008, 103(5):053107.
[21] Ding M, Wang P, Brambilla G. A microfiber coupler tip thermometer[J]. Optics Express, 2012, 20(5):5402-5408.
[22] Ding M, Wang P, Brambilla G. Fast-response high-temperature microfiber coupler tip thermometer[J]. IEEE Photonics Technology Letters, 2012, 24(14):1209-1211.
[23] Corres J M, Bravo J, Matias I, Arregui F J. Tapered optical fiber biosensor for the detection of anti-gliadin antibodies[J]. Sensors and Actuators B:Chemical, 2008, 135(1):166-171.
[24] Tian Y, Wang W, Wu N, Zou X, Wang X. Tapered optical fiber sensor for label-free detection of biomolecules[J]. Sensors, 2011, 11(4):3780-3790.
[25] Bo L, O'Mahony C C, Semenova Y. Gilmartin N, Wang P, Farrell G. Microfiber coupler based label-free immunosensor[J]. Optics Express, 2014, 22(7):8150-8155.
[26] Semenova Y, Wang P, Mathews S, Wu Q, Farrell G. Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay[C]//Proceedings of SPIE-the International Society for optics and photonics, 2013:87942L-1-87942L-5.
[27] Wang P F, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. Investigation of singlemode-multimode-single-mode and single-mode-tapered-multimode-single-mode fiber structures and their application for refractive index sensing[J]. Journal of the Optical Society of America B, 2011, 28(5):1180-1186.
[28] Bernini R, Campopiano S, Boer C D, Sarro P M. Planar antiresonant reflecting optical waveguides as integrated optical refractometer[J]. IEEE Sensors Journal, 2003, 3(5):652-657.
[29] Veldhuis G J, Veen L E W V D, Lambeck P V. Integrated optical refractometer based on waveguide bend loss[J]. Journal of Lightwave Technology, 1999, 17(5):857-864.
[30] Wang P F, Semenova Y, Wu Q, Farrell G, Ti Y Q, Zheng J. Macrobending single-mode fiber-based refractometer[J]. Applied Optics, 2009, 48(31):6044-6049.
[31] Donlagic D. In-line higher order mode filters based on long highly uniform fiber tapers[J]. Journal of Lightwave Technology, 2006, 24(9):3532.
[32] Villatoro J, Monzó-Hernádez D, Luna-Moreno D. In-line optical fiber sensors based on cladded multimode tapered fibers[J]. Applied Optics, 2004, 43(32):5933-5938.
[33] Wang P F, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference[J]. Optics Letters, 2011, 36(12):2233-2235.
[34] Wu Q, Semenova Y, Wang P F, Farrell G. A comprehensive analysis verified by experiment of a refractometer based on an SMF28-small-core singlemode fiber (SCSMF)-SMF28 fiber structure[J]. Journal of Optics, 2011, 13(12):937-946.
[35] Wang P, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. High-sensitivity, evanescent field refractometric sensor based on a tapered, mult imode fiber interference,[J]. Optics Letters, 2011, 36(12):2233-2235.
[36] Wang P F, Brambilla G, Ding M, Lee T, Bo L, Semenova Y, Wu Q, Farrell G. Enhanced refractometer based on periodically tapered small core singlemode fiber[J]. IEEE Sensors Journal, 2013, 13(1):180-185.
[37] Jha R, Villatoro J, Badenes G, Pruneri V. Refractometry based on a photonic crystal fiber interferometer[J]. Optics Letters, 2009, 34(9):617-619.
[38] Kim H J, Kwon O J, Lee S B, Han Y G. Polarization-dependent refractometer for discrimination of temperature and ambient refractive index[J]. Optics Letters, 2012, 37(11):1802-1804.
[39] Rao Y J, Wang Y P, Ran Z L, Zhu T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO 2 laser pulses[J]. Journal of Lightwave Technology, 2003, 21(5):1320-1327.
[40] Wang Y P, Xiao L, Wang D N, Jin W. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity[J]. Optics Letters, 2006, 31(23):3414-3416.
[41] Wang P F, Bo L, Guan C Y, Semenova Y, Wu Q, Brambilla G, Farrell G. Lowtemperature sensitivity periodically tapered photonic crystal-fiber-based refractometer[J]. Optics Letters, 2013, 38(19):3795-3798.
[42] Hatta A M, Rajan G, Semenova Y, Farrell G. SMS fibre structure for temperature measurement using a simple intensity-based interrogation system[J]. Electronics Letters, 2009, 45(21):1069-1070.
[43] Wang P, Ding M, Bo L, Guan C, Semenova Y, Wu Q, Farrell G, Brambilla G. Fiber-tip high-temperature sensor based on multimode interference[J]. Optics Letters, 2013, 38(22):4617-4620.
[44] Barrera D, Finazzi V, Villatoro J, Sales S, Pruneri V. Performance of a hightemperature sensor based on regenerated fiber Bragg gratings[C]//International Conference on Optical Fiber Sensors, 2011, 7753(4):125-130.
[45] Ding M, Wang P F, Wang J L, Brambilla G. FIB-milled gold-coated singlemodemultimode-singlemode fiber tip refractometer[J]. IEEE Photonics Technology Letters, 2014, 26(3):239-241.
[46] Wang P F, Ding M, Bo L, Guan C Y, Semenova Y, Sun W, Yuan L B, Brambilla G. Photonic crystal fiber half-taper probe based refractometer[J]. Optics Letters, 2014, 39(7):2076-2079.
[47] MilEńo K, Hu D J, Shum P P, Zhang T, Lim J L, Wang Y, Wolińki T R, Wei H, Tong W. Photonic crystal fiber tip interferometer for refractive index sensing[J]. Optics Letters, 2012, 37(8):1373-1375.
[48] Melle S M, Liu K, Measures R. A passive wavelength demodulation system for guided-wave Bragg grating sensors[J]. IEEE Photonics Technology Letters, 1992, 4(5):516-518.
[49] Ribeiro A B L, Ferreira L A, Tsvetkov M T, Santos J L. All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter[J]. Electronics Letters, 1996, 32(4):382.
[50] Liu Y, Zhang L, Bennion I. Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures[J]. Measurement Science and Technology, 1999, 10(1):L1-L3.
[51] Wang Q, Farrell G, Freir T, Rajan G, Wang P. Low-cost wavelength measurement based on a macrobending single-mode fiber[J]. Optics Letters, 2006, 31(12):1785-1787.
[52] Wang P F, Farrell G, Wang Q, Rajan G. An optimized macrobending-fiber-based edge filter[J]. IEEE Photonics Technology Letters, 2007, 19(15):1136-1138.
[53] Hatta A M, Farrell G, Wang P F, Rajan G, Semenova Y. Misalignment limits for a singlemode-multimode-singlemode fiber-based edge filter[J]. Journal of Lightwave Technology, 2009, 27(13):2482-2488.
[54] Wang P F, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. The use of a fiber comb filter fabricated by a CO2 laser irradiation to improve the resolution of a ratiometric wavelength measurement system[J]. Journal of Lightwave Technology, 2012, 30(8):1143-1149.
[55] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000Åvia four-photon coupling in glass[J]. Physical Review Letters, 1970, 24(11):584-587.
[56] Shah J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures[M]. New York:Springer Science & Business Media, 1996.
[57] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jøgensen C G. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3):250-252.
[58] Drexler W, Morgner U, Kätner F X, Pitris C, Boppart S A, Li X D, Ippen E P. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 1999, 24(17):1221-1223.
[59] Neal R T, Charlton M D C, Parker G J, FinlaysonC E, Netti M C, Baumberg J J. Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide[J]. Applied Physics Letters, 2003, 83(22):4598-4600.
[60] Genty G, Lehtonen M, Ludvigsen H. Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses[J]. Optics Express, 2004, 12(19):4614-4624.
[61] Lesvigne C, Couderc V, Tonello A, Leproux P, BarthéLéy A, Lacroix S, Druon F, Blandin P, Hanna M, Georges P. Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber[J]. Optics Letters, 2007, 32(15):2173-2175.
[62] Coen S, Chau A H L, R. Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P S J. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers[J]. Journal of the Optical Society of Amerial B, 2002, 19(4):753-764.
[63] Gopinath J T, Shen H M, Sotobayashi H, Ippen E P, Hasegawa T. Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5μm[J]. Optics Express, 2004, 12(23):5697-5702.
[64] Husakou A, Herrmann J. Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses[J]. Applied Physics B:Lasers and Optics, 2003, 77(2):227-234.
[65] Li P, Shi K, Liu Z. Manipulation and spectroscopy of a single particle by use of white-light optical tweezers[J]. Optics Letters, 2005, 30(2):156-158.
[66] Wang P F, Lee T, Ding M. White light trapping using supercontinuum generation spectra in a lead-silicate fibre taper[J]. Journal of Lightwave Technology, 2014, 32(1):40-45.
[67] Parmigiani F, Petropoulos P, Horak P, Ponzo G M, Petrovich M, Shi J D, Loh W H, Richardson D J. Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths[J]. Optical Fiber Technology, 2010, 16(6):378-391.
/
| 〈 |
|
〉 |