[1] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968):816-819.
[2] Richardson D J, Koukharenko E, Xu F, Koizumi F, Murugan G S. Optical fiber nanowires and microwires:fabrication and applications[J]. Advances in Optics & Photonics, 2009, 1(1):107-161.
[3] Guo X, Tong L. Supported microfiber loops for optical sensing[J]. Optics Express, 2008, 16(19):14429-14434.
[4] Hanumegowda N M, Stica C J, Patel B C, White I, Fan X. Refractometric sensors based on microsphere resonators[J]. Applied Physics Letters, 2005, 87(20):4057.
[5] Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator[J]. Applied Physics Letters, 2008, 92(10):101126.
[6] Verma R K, Sharma A K, Gupta B. Surface plasmon resonance based tapered fiber optic sensor with different taper profiles[J]. Optics Communications, 2008, 281(6):1486-1491.
[7] Jung Y, Brambilla G, Richardson D J. Comparative study of the effective single mode operational bandwidth in sub-wavelength optical wires and conventional single-mode fibers[J]. Optics express, 2009, 17(19):16619-16624.
[8] Liu Z H, Guo C K, Yang J, Yuan L B. Tapered fiber optical tweezers for microscopic particle trapping:fabrication and application[J]. Optics Express, 2006, 14(25):12510-12516.
[9] Sarkissian R, Farrell S, O'Brien J D. Spectroscopy of a tapered-fiber photonic crystal waveguide coupler[J]. Optics Express, 2009, 17(13):10738-10747.
[10] Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to single molecules[J]. Nature Methods, 2008, 5(7):591-596.
[11] Jung Y, Brambilla G, Richardson D J. Optical microfiber coupler for broadband singlemode operation[J]. Massachusetts:Optics Express Cambrige, 2009, 17(7):5273-5278.
[12] Okamoto K. Fundamentals of optical waveguides[M]. Massachusetts:Academic Press Cambrige, 2010.
[13] Payne F, Hussey C, Yataki M. Polarisation analysis of strongly fused and weakly fused tapered couplers[J]. Electronics Letters, 1985, 21(13):561-563.
[14] Xu F, Horak P, Brambilla G. Optimized design of microcoil resonators[J]. Journal of Lightwave Technology, 2007, 25(6):1561-1567.
[15] Sumetsky M. Optical fiber microcoil resonator[J]. Optics Express, 2004, 12(10):2303-2316.
[16] Bo L, Wang P, Semenova Y, Farrell G. High sensitivity fiber refractometer based on an optical microfiber coupler[J]. IEEE Photonics Technology Letters, 2013, 25(3):228-230.
[17] Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotapers[J]. Optics Express, 2004, 12(10):2258-2263.
[18] Birks T A, Li Y W. The shape of fiber tapers[J]. Journal of Lightwave Technology, 1992, 10(4):432-438.
[19] Wang P, Ding M, Brambilla G, Semenova Y, Wu Q, Farrell G. High temperature performance of an optical microfibre coupler and its potential use as a sensor[J]. Electronics Letters, 2012, 48(5):283-284.
[20] Men L, Lu P, Chen Q. A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement[J]. Journal of Applied Physics, 2008, 103(5):053107.
[21] Ding M, Wang P, Brambilla G. A microfiber coupler tip thermometer[J]. Optics Express, 2012, 20(5):5402-5408.
[22] Ding M, Wang P, Brambilla G. Fast-response high-temperature microfiber coupler tip thermometer[J]. IEEE Photonics Technology Letters, 2012, 24(14):1209-1211.
[23] Corres J M, Bravo J, Matias I, Arregui F J. Tapered optical fiber biosensor for the detection of anti-gliadin antibodies[J]. Sensors and Actuators B:Chemical, 2008, 135(1):166-171.
[24] Tian Y, Wang W, Wu N, Zou X, Wang X. Tapered optical fiber sensor for label-free detection of biomolecules[J]. Sensors, 2011, 11(4):3780-3790.
[25] Bo L, O'Mahony C C, Semenova Y. Gilmartin N, Wang P, Farrell G. Microfiber coupler based label-free immunosensor[J]. Optics Express, 2014, 22(7):8150-8155.
[26] Semenova Y, Wang P, Mathews S, Wu Q, Farrell G. Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay[C]//Proceedings of SPIE-the International Society for optics and photonics, 2013:87942L-1-87942L-5.
[27] Wang P F, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. Investigation of singlemode-multimode-single-mode and single-mode-tapered-multimode-single-mode fiber structures and their application for refractive index sensing[J]. Journal of the Optical Society of America B, 2011, 28(5):1180-1186.
[28] Bernini R, Campopiano S, Boer C D, Sarro P M. Planar antiresonant reflecting optical waveguides as integrated optical refractometer[J]. IEEE Sensors Journal, 2003, 3(5):652-657.
[29] Veldhuis G J, Veen L E W V D, Lambeck P V. Integrated optical refractometer based on waveguide bend loss[J]. Journal of Lightwave Technology, 1999, 17(5):857-864.
[30] Wang P F, Semenova Y, Wu Q, Farrell G, Ti Y Q, Zheng J. Macrobending single-mode fiber-based refractometer[J]. Applied Optics, 2009, 48(31):6044-6049.
[31] Donlagic D. In-line higher order mode filters based on long highly uniform fiber tapers[J]. Journal of Lightwave Technology, 2006, 24(9):3532.
[32] Villatoro J, Monzó-Hernádez D, Luna-Moreno D. In-line optical fiber sensors based on cladded multimode tapered fibers[J]. Applied Optics, 2004, 43(32):5933-5938.
[33] Wang P F, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference[J]. Optics Letters, 2011, 36(12):2233-2235.
[34] Wu Q, Semenova Y, Wang P F, Farrell G. A comprehensive analysis verified by experiment of a refractometer based on an SMF28-small-core singlemode fiber (SCSMF)-SMF28 fiber structure[J]. Journal of Optics, 2011, 13(12):937-946.
[35] Wang P, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. High-sensitivity, evanescent field refractometric sensor based on a tapered, mult imode fiber interference,[J]. Optics Letters, 2011, 36(12):2233-2235.
[36] Wang P F, Brambilla G, Ding M, Lee T, Bo L, Semenova Y, Wu Q, Farrell G. Enhanced refractometer based on periodically tapered small core singlemode fiber[J]. IEEE Sensors Journal, 2013, 13(1):180-185.
[37] Jha R, Villatoro J, Badenes G, Pruneri V. Refractometry based on a photonic crystal fiber interferometer[J]. Optics Letters, 2009, 34(9):617-619.
[38] Kim H J, Kwon O J, Lee S B, Han Y G. Polarization-dependent refractometer for discrimination of temperature and ambient refractive index[J]. Optics Letters, 2012, 37(11):1802-1804.
[39] Rao Y J, Wang Y P, Ran Z L, Zhu T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO 2 laser pulses[J]. Journal of Lightwave Technology, 2003, 21(5):1320-1327.
[40] Wang Y P, Xiao L, Wang D N, Jin W. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity[J]. Optics Letters, 2006, 31(23):3414-3416.
[41] Wang P F, Bo L, Guan C Y, Semenova Y, Wu Q, Brambilla G, Farrell G. Lowtemperature sensitivity periodically tapered photonic crystal-fiber-based refractometer[J]. Optics Letters, 2013, 38(19):3795-3798.
[42] Hatta A M, Rajan G, Semenova Y, Farrell G. SMS fibre structure for temperature measurement using a simple intensity-based interrogation system[J]. Electronics Letters, 2009, 45(21):1069-1070.
[43] Wang P, Ding M, Bo L, Guan C, Semenova Y, Wu Q, Farrell G, Brambilla G. Fiber-tip high-temperature sensor based on multimode interference[J]. Optics Letters, 2013, 38(22):4617-4620.
[44] Barrera D, Finazzi V, Villatoro J, Sales S, Pruneri V. Performance of a hightemperature sensor based on regenerated fiber Bragg gratings[C]//International Conference on Optical Fiber Sensors, 2011, 7753(4):125-130.
[45] Ding M, Wang P F, Wang J L, Brambilla G. FIB-milled gold-coated singlemodemultimode-singlemode fiber tip refractometer[J]. IEEE Photonics Technology Letters, 2014, 26(3):239-241.
[46] Wang P F, Ding M, Bo L, Guan C Y, Semenova Y, Sun W, Yuan L B, Brambilla G. Photonic crystal fiber half-taper probe based refractometer[J]. Optics Letters, 2014, 39(7):2076-2079.
[47] MilEńo K, Hu D J, Shum P P, Zhang T, Lim J L, Wang Y, Wolińki T R, Wei H, Tong W. Photonic crystal fiber tip interferometer for refractive index sensing[J]. Optics Letters, 2012, 37(8):1373-1375.
[48] Melle S M, Liu K, Measures R. A passive wavelength demodulation system for guided-wave Bragg grating sensors[J]. IEEE Photonics Technology Letters, 1992, 4(5):516-518.
[49] Ribeiro A B L, Ferreira L A, Tsvetkov M T, Santos J L. All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter[J]. Electronics Letters, 1996, 32(4):382.
[50] Liu Y, Zhang L, Bennion I. Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures[J]. Measurement Science and Technology, 1999, 10(1):L1-L3.
[51] Wang Q, Farrell G, Freir T, Rajan G, Wang P. Low-cost wavelength measurement based on a macrobending single-mode fiber[J]. Optics Letters, 2006, 31(12):1785-1787.
[52] Wang P F, Farrell G, Wang Q, Rajan G. An optimized macrobending-fiber-based edge filter[J]. IEEE Photonics Technology Letters, 2007, 19(15):1136-1138.
[53] Hatta A M, Farrell G, Wang P F, Rajan G, Semenova Y. Misalignment limits for a singlemode-multimode-singlemode fiber-based edge filter[J]. Journal of Lightwave Technology, 2009, 27(13):2482-2488.
[54] Wang P F, Brambilla G, Ding M, Semenova Y, Wu Q, Farrell G. The use of a fiber comb filter fabricated by a CO2 laser irradiation to improve the resolution of a ratiometric wavelength measurement system[J]. Journal of Lightwave Technology, 2012, 30(8):1143-1149.
[55] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000Åvia four-photon coupling in glass[J]. Physical Review Letters, 1970, 24(11):584-587.
[56] Shah J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures[M]. New York:Springer Science & Business Media, 1996.
[57] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jøgensen C G. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3):250-252.
[58] Drexler W, Morgner U, Kätner F X, Pitris C, Boppart S A, Li X D, Ippen E P. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 1999, 24(17):1221-1223.
[59] Neal R T, Charlton M D C, Parker G J, FinlaysonC E, Netti M C, Baumberg J J. Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide[J]. Applied Physics Letters, 2003, 83(22):4598-4600.
[60] Genty G, Lehtonen M, Ludvigsen H. Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses[J]. Optics Express, 2004, 12(19):4614-4624.
[61] Lesvigne C, Couderc V, Tonello A, Leproux P, BarthéLéy A, Lacroix S, Druon F, Blandin P, Hanna M, Georges P. Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber[J]. Optics Letters, 2007, 32(15):2173-2175.
[62] Coen S, Chau A H L, R. Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P S J. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers[J]. Journal of the Optical Society of Amerial B, 2002, 19(4):753-764.
[63] Gopinath J T, Shen H M, Sotobayashi H, Ippen E P, Hasegawa T. Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5μm[J]. Optics Express, 2004, 12(23):5697-5702.
[64] Husakou A, Herrmann J. Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses[J]. Applied Physics B:Lasers and Optics, 2003, 77(2):227-234.
[65] Li P, Shi K, Liu Z. Manipulation and spectroscopy of a single particle by use of white-light optical tweezers[J]. Optics Letters, 2005, 30(2):156-158.
[66] Wang P F, Lee T, Ding M. White light trapping using supercontinuum generation spectra in a lead-silicate fibre taper[J]. Journal of Lightwave Technology, 2014, 32(1):40-45.
[67] Parmigiani F, Petropoulos P, Horak P, Ponzo G M, Petrovich M, Shi J D, Loh W H, Richardson D J. Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths[J]. Optical Fiber Technology, 2010, 16(6):378-391. |