[1] Zhu Q M, Jiang K L, Chen X M, et al. A novel 3D non-stationary UAV-MIMO channel model and its statistical properties[J]. China Communication, 2018, 15(12): 147-158. [2] Chen X M, Hu X J, Zhu Q M, et al. Channel modeling and performance analysis for UAV relay systems[J]. China Communications, 2018, 15(12): 89-97. [3] Zhu Q M, Yang Y, Jiang K L, et al. A novel 3D non-stationary geometry-based MIMO channel model for UAV-ground communication systems[J]. IET Microwaves, Antennas and Propagation, 2019, 13(8): 1104-1112. [4] Hur S, Baek S, Kim B, et al. Proposal on millimeter-wave channel modeling for 5G cellular system[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 454-469. [5] Sulyman A I, Alwarafy A, Maccartney G R, et al. Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands[J]. IEEE Transactions on Wireless Communications, 2016, 15(10): 6939-6947. [6] Maccartney G R, Rappaport T S. Rural macrocell path loss models for millimeter wave wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1663-1677. [7] Rappaport T S, Xing Y, Maccartney G R, et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6213-6230. [8] Zhang L, Zhao H, Hou S, et al. A survey on 5G millimeter wave communications for UAVassisted wireless networks[J]. IEEE Access, 2019: 1-41. [9] Khawaja W, Guvenc I, Matolak D, et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles[J]. IEEE Communications Surveys and Tutorials, 2019: 1-33. [10] Zeng Y, Lyu J, Zhang R. Cellular-connected UAV: potential, challenges, and promising technologies[J]. IEEE Wireless Communications, 2019, 26(1): 120-127. [11] Cui Z, Briso C, Guan K, et al. Low-altitude UAV air-ground propagation channel measurement and analysis in a suburban environment at 3.9 GHz[J]. IET Microwaves, Antennas and Propagation, 2019, 13(9): 1503-1508. [12] Cui Z, Briso C, Guan K, et al. Measurement-based modeling and analysis of UAV air-ground channels at 1 GHz and 4 GHz[J]. IEEE Antennas and Wireless Propagation Letters, 2019: 1-5. [13] Lu C, Zhao Z, Wu Z, et al. A new rain attenuation prediction model for the earth-space links[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5432-5442. [14] Shayea I, Rahman T A, Azmi M H, et al. Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia[J]. IEEE Access, 2018, 6: 19044-19064. [15] Andrade F, Medeiros A, Luiz D S M. Short-term rain attenuation predictor for terrestrial links in tropical area[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1325-1328. [16] Bas C U, Wang R, Sangodoyin S, et al. Outdoor to indoor propagation channel measurements at 28 GHz[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1477-1489. [17] Qu Z, Zhang G, Cao H, et al. Stochastic dynamic modeling of rain attenuation: a survey[J]. China Communications, 2018, 15(3): 220-235. [18] Ulaganathen K, Tharek A R, Islam R M, et al. Rain attenuation for 5G network in tropical region (Malaysia) for terrestrial link[C]//13th Malaysia International Conference on Communications (MICC), Johor Bahru, 2017: 35-38. [19] Bai T, Vaze R, Heath R W. Analysis of blockage effects on urban cellular networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 5070-5083. |