[1] 王卫平, 刘颖. 基于用户行为序列的推荐算法[J]. 计算机系统应用, 2006: 35-38. Wang W P, Liu Y. Recommendation algorithm based on customer behavior locus[J]. Computer Systems and Applications, 2006: 35-38. (in Chinese) [2] 张永锋. 推荐系统调研报告及综述[EB/OL]. (2016-03-25)[2020-05-08]. https://wenku.baidu.com/view/0cd314cd0722192e4436f6aa.html.2016-03-25. [3] 陈琛. Netflix大赛电影推荐算法[EB/OL]. https://zhuanlan.zhihu.com/p/74489418.2019-07-23. [4] Covington P, Adams J, Sargin E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 191-198. [5] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-based recommendations with recurrent neural networks[C]//ICLR: the International Conference on Learning Representations. US: Computer Science, Mathematics, CoRR, abs/1511.06939. 2016: 319-325. [6] Yong K T, Xu X X, Liu Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. United States: ACM, 2016: 17-22. [7] Pasumarthi R K, Wang X H, Bruch S. TF-Ranking: scalable tensorflow library for learning-to-rank[EB/OL]. (2018-12-05)[2020-05-08]. http://ai.googleblog.com/2018/12/tfranking-scalable-tensorflow-library.html. [8] 蔡海尼, 牛冰慧, 文俊浩, 等. 基于时序模型和矩阵分解的推荐系统算法[J]. 计算机应用研究, 2018, 35(6): 1624-1627. Cai H N, Nui B H, Wen J H, et al. Recommender algorithm based on time series model and matrix factorization[J]. Application Research of Computers, 2018, 35(6): 1624-1627. (in Chinese) [9] Yu Z P, Lian J X, Mahmoody A, et al. Adaptive user modeling with long and short-term preferences for personalized recommendation[C]//IJCAI-19: the Twenty-Eighth International Joint Conference on Artificial Intelligence. Burlington: Morgan Kaufmann, 2019: 4213-4219. [10] 陈俊航, 徐小平, 杨恒泓. 基于Seq2seq模型的推荐应用研究[J]. 计算机科学, 2019, 46(6): 493-496. Chen J H, Xu X P, Yang H H. Research on recommendation application based on Seq2seq model[J]. Computer Science, 2019, 46(6): 493-496. (in Chinese) [11] Dallmann A, Grimm A, Plitz C, et al. Improving session recommendation with recurrent neural networks by exploiting dwell time[DB/OL].[2020-05-08]. https://arxiv.org/abs/1706.10231. [12] 应毅, 刘亚军, 陈诚. 基于云计算技术的个性化推荐系统[J]. 计算机工程与应用, 2015, 51(13): 111-117. Ying Y, Liu Y J, Chen C. Personalization recommender system based on cloud-computing technology[J]. Computer Engineering and Applications, 2015, 51(13): 111-117. (in Chinese) [13] Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system[C]//KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. [14] Tok A. The montonic, darting, best-first boosted tree[EB/OL]. (2019-07-08)[2020-05-08]. http://link.medium.com/g2GtCYafJ4. [15] 张祖平, 沈晓阳. 基于深度学习的用户行为推荐方法研[J]. 计算机工程与应用, 2019, 55(4): 142-147, 158. Zhang Z P, Shen X Y. Research on user behavior recommendation method based on deep learning[J]. Computer Engineering and Applications, 2019, 55(4): 142-147, 158. (in Chinese) [16] Lee H, Ahn Y, Lee H, et al. Quote recommendation in dialogue using deep neural network[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. United States: ACM, 2016: 957-960. [17] Tan Y K, Xu X X, Liu Y. Improved recurrent neural networks for session-based recommendations[C]//DLRS 2016: Workshop on Deep Learning for Recommender Systems. New York: Association for Computing Machinery, 2016: 17-22. [18] Messica A, Rokach L, Friedman M. Session-based recommendations using item embedding[C]//IUI ’17: Proceedings of the 22nd International Conference on Intelligent User Interfaces. New York: ACM, 2017: 629-633. [19] Hidasi B, Karatzoglou A, Baltrunas L, et al. Recurrent neural networks with top-k gains for session-based recommendations[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 843-852. [20] Jalili M. A survey of collaborative filtering recommender algorithms and their evaluation metrics[J]. International Journal of System Modeling and Simulation, 2017: 2(2): 14-17. |