[1] Cozzi L. World energy outlook special report 2016:energy and air pollution[J]. International Energy Agency, 2016:17-56. [2] Beelen R, Hoek G, Van Den Brandt P A, et al. Long-term exposure to traffic-related air pollution and lung cancer risk[J]. Epidemiology (Cambridge, Mass), 2008, 19(5):702-710. [3] Gan W Q, Koehoorn M, Davies H W, et al. Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality[J]. Environmental Health Perspectives, 2011, 119(4):501-507. [4] 梅波,田茂再.基于时空模型北京市PM2.5浓度影响因素研究[J].数理统计与管理, 2018, 37(4):571-586. Mei B, Tian M Z. Analysis of influential factors on PM2.5 in Beijing based on spatio-temporal model[J]. Journal of Applied Statistics and Management, 2018, 37(4):571-586.(in Chinese) [5] 周曙东,欧阳纬清,葛继红.京津冀PM2.5的主要影响因素及内在关系研究[J].中国人口·资源与环境, 2017, 27(4):102-109. Zhou S D, Ouyang W Q, Ge J H. Study on the main influencing factors and their intrinsic relations of PM2.5 in Beijing-Tianjin-Hebei[J]. China Population, Resources and Environment, 2017, 27(4):102-109.(in Chinese) [6] Wen C C, Liu S F, Yao X J, et al. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction[J]. Science of the Total Environment, 2019, 654:1091-1099. [7] Bey I, Jacob D J, Yantosca R M, et al. Global modeling of tropospheric chemistry with assimilated meteorology:model description and evaluation[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D19):23073-23095. [8] Grell G A, Peckham S E, Schmitz R, et al. Fully coupled "online" chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37):6957-6975. [9] Di Carlo P, Pitari G, Mancini E, et al. Evolution of surface ozone in central Italy based on observations and statistical model[J]. Journal of Geophysical Research:Atmospheres, 2007:112(D10). [10] Castellano M, Franco A, Cartelle D, et al. Identification of NOx and ozone episodes and estimation of ozone by statistical analysis[J]. Water, Air, and Soil Pollution, 2009, 198(1/2/3/4):95-110. [11] Liu B C, Binaykia A, Chang P C, et al. Urban air quality forecasting based on multidimensional collaborative support vector regression (SVR):a case study of Beijing-TianjinShijiazhuang[J]. PLoS One, 2017, 12(7):e0179763. [12] Saxena A, Shekhawat S. Ambient air quality classification by grey wolf optimizer based support vector machine[J]. Journal of Environmental and Public Health, 2017, 2017:3131083. [13] Yu R Y, Yang Y, Yang L Y, et al. RAQ-a random forest approach for predicting air quality in urban sensing systems[J]. Sensors, 2016, 16(1):86. [14] Hu X F, Belle J H, Meng X, et al. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach[J]. Environmental Science&Technology, 2017, 51(12):6936-6944. [15] Chattopadhyay S, Chattopadhyay G. Modeling and prediction of monthly total ozone concentrations by use of an artificial neural network based on principal component analysis[J]. Pure and Applied Geophysics, 2012, 169(10):1891-1908. [16] Feng X, Li Q, Zhu Y J, et al. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation[J]. Atmospheric Environment, 2015, 107:118-128. [17] Ong B T, Sugiura K, Zettsu K. Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data[C]//2014 IEEE International Conference on Big Data (Big Data), 2014:760-765. [18] Fan J, Li Q, Hou J, et al. A spatiotemporal prediction framework for air pollution based on deep RNN[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-4/W2:15-22. [19] Li X, Peng L, Yao X J, et al. Long short-term memory neural network for air pollutant concentration predictions:method development and evaluation[J]. Environmental Pollution, 2017, 231:997-1004. [20] Zhao J C, Deng F, Cai Y Y, et al. Long short-term memory-fully connected (LSTM-FC) neural network for PM2.5 concentration prediction[J]. Chemosphere, 2019, 220:486-492. [21] Huang C J, Kuo P H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors, 2018, 18(7):2220. [22] Pak U, Kim C, Ryu U, et al. A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction[J]. Air Quality, Atmosphere&Health, 2018, 11(8):883-895. |