[1] Fu H H, Liao J F, Yang J Z, et al. The Sunway TaihuLight supercomputer:system and applications[J]. Science China Information Sciences, 2016, 59(7):1-16. [2] Rizvandi N B, Taheri J, Zomaya A Y. Some observations on optimal frequency selection in DVFS-based energy consumption minimization[J]. Journal of Parallel and Distributed Computing, 2011, 71(8):1154-1164. [3] Zheng W, Huang S H. Deadline constrained energy-efficient scheduling for workflows in clouds[C]//2014 International Conference on Advanced Cloud and Big Data, 2014:69-76. [4] Huang Q J, Su S, Li J, et al. Enhanced energy-efficient scheduling for parallel applications in cloud[C]//2012 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2012:781-786. [5] Pineda A A S, Peroce J, Huacuja H, et al. An iterative local search algorithm for scheduling precedence-constrained applications on heterogeneous machines[C]//6th Multidisciplinary International Conference on Scheduling:Theory and Applications (MISTA 2013), 2013:27-29. [6] Xu Y M, Li K L, He L G, et al. A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(12):3208-3222. [7] Keshanchi B, Navimipour N J. Priority-based task scheduling in the cloud systems using a memetic algorithm[J]. Journal of Circuits, Systems and Computers, 2016, 25(10):1650119. [8] 李智勇,陈少淼,杨波,等.异构云环境多目标Memetic优化任务调度方法[J].计算机学报, 2016, 39(2):377-390. Li Z Y, Chen S M, Yang B, et al. Multi-objective memetic algorithm for task scheduling on heterogeneous cloud[J]. Chinese Journal of Computers, 2016, 39(2):377-390.(in Chinese) [9] Gerards M E T, Hurink J L, Kuper J. On the interplay between global DVFS and scheduling tasks with precedence constraints[J]. IEEE Transactions on Computers, 2015, 64(6):1742-1754. [10] 肖鹏,胡志刚,屈喜龙.面向数据密集型工作流的能耗感知调度策略[J].通信学报, 2015(1):149-158. Xiao P, Hu Z G, Qu X L. Energy-aware scheduling policy for data-intensive workflow[J]. Journal on Communications, 2015(1):149-158.(in Chinese) [11] Zhou P J, Zheng W. An efficient biobjective heuristic for scheduling workflows on heterogeneous DVS-enabled processors[J]. Journal of Applied Mathematics, 2014, 2014:370917. [12] Li K Q. Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers[J]. IEEE Transactions on Computers, 2012, 61(12):1668-1681. [13] Mladenovi N, Hansen P. Variable neighborhood search[J]. Computers&Operations Research, 1997, 24(11):1097-1100. [14] Zhao F Q, Qin S, Zhang Y, et al. A hybrid biogeography-based optimization with variable neighborhood search mechanism for no-wait flow shop scheduling problem[J]. Expert Systems with Applications, 2019, 126:321-339. [15] Zhao F Q, Liu Y, Zhang Y, et al. A hybrid harmony search algorithm with efficient job sequence scheme and variable neighborhood search for the permutation flow shop scheduling problems[J]. Engineering Applications of Artificial Intelligence, 2017, 65:178-199. [16] Kalayci C B, Can K Y. An ant colony system empowered variable neighborhood search algorithm for the vehicle routing problem with simultaneous pickup and delivery[J]. Expert Systems with Applications, 2016, 66:163-175. [17] Marinakis Y, Migdalas A, Sifaleras A. A hybrid particle swarm optimization-variable neighborhood search algorithm for constrained shortest path problems[J]. European Journal of Operational Research, 2017, 261(3):819-834. [18] Arabnejad H, Barbosa J G. List scheduling algorithm for heterogeneous systems by an optimistic cost table[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(3):682-694. [19] Topcuoglu H, Hariri S, Wu M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3):260-274. [20] Zhang Y J, Wang Y, Tang X Y, et al. Energy-efficient task scheduling on heterogeneous computing systems by linear programming[J]. Concurrency and Computation:Practice and Experience, 2018, 30(19):e4731. [21] Khorsand R, Ramezanpour M. An energy-efficient task-scheduling algorithm based on a multi-criteria decision-making method in cloud computing[J].International Journal of Communication Systems, 2020, 33(9):4379-4396. [22] Su S, Huang Q J, Li J, et al. Enhanced energy-efficient scheduling for parallel tasks using partial optimal slacking[J]. The Computer Journal, 2014, 58(2):246-257. |