[1] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale [DB/OL]. 2021[2023-02-24]. http://arxiv.org/abs/2010.11929. [2] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [3] Oliveira G L, Burgardw, Brox T. Efficient deep methods for monocular road segmentation [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016: 89- 97. [4] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [DB/OL]. 2015[2023-02-24]. http://arxiv.org/abs/1409.1556. [5] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation [C]//18th International Conference on Medical Image Computing and ComputerAssisted Intervention, 2015: 234-241. [6] Lyu Y C, Bai L, Huang X M. Road segmentation using CNN and distributed LSTM [C]//IEEE International Symposium on Circuits and Systems (ISCAS), 2019: 1-5. [7] Hochreiter S, Schmidhuber J. Long short-term memory [J], Neural Computation, 1997, 9(8): 1735-1780, [8] Sun J Y, Kim S W, Lee S W, et al. Reverse and boundary attention network for road segmentation [C]//IEEE/CVF International Conference on Computer Vision Workshops, 2019: 876-885. [9] Teichmann M, Weber M, Zoellner M, et al. Multinet: real-time joint semantic reasoning for autonomous driving [C]//IEEE Intelligent Vehicles Symposium (IV), 2018: 1013-1020. [10] Gu S, Yang J, Kong H. A cascaded lidar-camera fusion network for road detection [C]//IEEE International Conference on Robotics and Automation (ICRA), 2021: 13308-13314. [11] Yu B, Lee D, Lee J S, et al. Free space detection using camera-LiDAR fusion in a bird’s eye view plane [J]. Sensors, 2021, 21(22): 7623. [12] 张莹, 黄影平, 郭志阳, 等. 基于点云与图像交叉融合的道路分割方法[J]. 光电工程, 2021, 48(12): 21-28. Zhang Y, Huang Y P, Guo Z Y, et al. Point cloud-image data fusion for road segmentation [J]. Opto-Electronic Engineering, 2021, 48(12): 21-28. (in Chinese) [13] Chang Y, Xue F, Sheng F, et al. Fast road segmentation via uncertainty-aware symmetric network [C]//International Conference on Robotics and Automation (ICRA), 2022: 11124-11130. [14] Zheng S X, Lu J C, Zhao H S, et al. Rethinking semantic segmentation from a sequence-tosequence perspective with transformers [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6881-6890. [15] Strudel R, Garcia R, Laptev I, et al. Segmenter: transformer for semantic segmentation [C]//IEEE/CVF International Conference on Computer Vision, 2021: 7242-7252. [16] Xie E, Wang W, Yu Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers [J]. Advances in Neural Information Processing Systems, 2021, 34: 12077- 12090. [17] Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]//IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. [18] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers [C]//16th European Conference on Computer Vision, 2020: 213-229. [19] Wang W, Xie E, Li X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions [C]//IEEE/CVF International Conference on Computer Vision, 2021: 568-578. [20] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [21] Stergiou A, Poppe R, Kalliatakis G. Refining activation downsampling with SoftPool [C]//IEEE/CVF International Conference on Computer Vision, 2021: 10357-10366. [22] Kervadec H, Bouchtiba J, Desrosiers C, et al. Boundary loss for highly unbalanced segmentation [J]. Medical Image Analysis, 2021, 67: 101851 [23] Wang Y, Ma X, Chen Z, et al. Symmetric cross entropy for robust learning with noisy labels [C]//IEEE/CVF International Conference on Computer Vision, 2019: 322-330. |