Journal of Applied Sciences ›› 2025, Vol. 43 ›› Issue (3): 519-529.doi: 10.3969/j.issn.0255-8297.2025.03.012
• Signal and Information Processing • Previous Articles
YE Qing1, XU Yehui2, LI Huichuan1, MA Dan1, ZHANG Liming1
Received:
2024-09-09
Published:
2025-06-23
CLC Number:
YE Qing, XU Yehui, LI Huichuan, MA Dan, ZHANG Liming. Prediction of Soil Organic Carbon for Cultivated Lands in Jianyang District of Nanping City Based on Soil Texture[J]. Journal of Applied Sciences, 2025, 43(3): 519-529.
[1] Zhou T, Geng Y, Ji C, et al. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: a comparison between Sentinel-2, Sentinel-3 and Landsat-8 images [J]. Science of the Total Environment, 2021, 755: 142661. [2] Garosi Y, Ayoubi S, Nussbaum M, et al. Effects of different sources and spatial resolutions of environmental covariates on predicting soil organic carbon using machine learning in a semi-arid region of Iran [J]. Geoderma Regional, 2022, 29: e00513. [3] Forkuor G, Hounkpatin O K L, Welp G, et al. High resolution mapping of soil properties using remote sensing variables in South-Western Burkina Faso: a comparison of machine learning and multiple linear regression models [J]. PLoS One, 2017, 12(1): e0170478. [4] 任必武, 陈瀚阅, 张黎明, 等. 机器学习用于耕地土壤有机碳空间预测对比研究——以亚热带复杂地貌区为例[J]. 中国生态农业学报, 2021, 29(6): 1042-1050. Ren B W, Chen H Y, Zhang L M, et al. Comparison of machine learning for predicting and mapping soil organic carbon in cultivated land in a subtropical complex geomorphic region [J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1042-1050. (in Chinese) [5] 袁玉琦, 陈瀚阅, 张黎明, 等. 基于多变量与RF算法的耕地土壤有机碳空间预测研究——以福建亚热带复杂地貌区为例[J]. 土壤学报, 2021, 58(4): 887-899. Yuan Y Q, Chen H Y, Zhang L M, et al. Prediction of spatial distribution of soil organic carbon in farmland based on multi-variables and random forest algorithm—a case study of a subtropical complex geomorphic region in Fujian as an example [J]. Acta Pedologica Sinica, 2021, 58(4): 887-899. (in Chinese) [6] 陈荣, 韩浩武, 傅佩红, 等. 基于多时相遥感影像和随机森林算法的土壤制图[J]. 土壤, 2021, 53(5): 1087-1094. Chen R, Han H W, Fu P H, et al. Soil mapping based on multi-temporal remote sensing images and random forest algorithm [J]. Soils, 2021, 53(5): 1087-1094. (in Chinese) [7] Guo L, Fu P, Shi T, et al. Exploring influence factors in mapping soil organic carbon on lowrelief agricultural lands using time series of remote sensing data [J]. Soil and Tillage Research, 2021, 210: 104982. [8] Luo C, Zhang X, Meng X, et al. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in google earth engine [J]. Catena, 2022, 209: 105842. [9] Zepp S, Heiden U, Bachmann M, et al. Estimation of soil organic carbon contents in croplands of Bavaria from SCMaP soil reflectance composites [J]. Remote Sensing, 2021, 13(16): 3141. [10] Zhang F, Li J, Shen Q, et al. Algorithms and schemes for chlorophyll a estimation by remote sensing and optical classification for Turbid Lake Taihu, China [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 350-364. [11] Wang X, Wen Z, Liu G, et al. Remote estimates of total suspended matter in China’s main estuaries using Landsat images and a weight random forest model [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 94-110. [12] Wang X, Li L, Liu H, et al. Prediction of soil organic matter using VNIR spectral parameters extracted from shape characteristics [J]. Soil and Tillage Research, 2022, 216: 105241. [13] Somarathna P, Malone B P, Minasny B. Mapping soil organic carbon content over New South Wales, Australia using local regression Kriging [J]. Geoderma Regional, 2016, 7(1): 38-48. [14] 石碧婉, 高文静, 杨志颖, 等. 土壤质地和有机碳分子组成对土壤有机碳的矿化和微生物碳积累效率的影响[J]. 草业科学, 2023, 40(2): 365-377. Shi B W, Gao W J, Yang Z Y, et al. Soil texture and organic carbon molecular composition are the main factors affecting soil organic carbon mineralization and microbial carbon accumulation efficiency [J]. Pratacultural Science, 2023, 40(2): 365-377. (in Chinese) [15] 沈璇玚, 段良霞, 欧阳宁相, 等. 湖南省水稻土有机碳剖面分布特征及影响因素[J]. 土壤通报, 2024, 55(1): 84-92. Shen X Y, Duan L X, Ouyang N X, et al. Profile distribution characteristics of paddy soil organic carbon and its influencing factors in Hunan Province [J]. Chinese Journal of Soil Science, 2024, 55(1): 84-92. (in Chinese) [16] Wang X, Wang L, Li S, et al. Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model [J]. Geoderma, 2022, 425: 116066. [17] 苏少川, 廖旺顺, 刘剑斌, 等. 建阳市森林生态系统服务价值评估[J]. 西南林业大学学报, 2014, 34(1): 73-77. Su S C, Liao W S, Liu J B, et al. Evaluation on service value of forest ecosystem in Jianyang Municipality [J]. Journal of Southwest Forest University, 2014, 34(1): 73-74. (in Chinese) [18] 李朝英, 郑路, 明安刚, 等. 蒸汽浴-流动分析仪法测定土壤有机碳含量的方法[J]. 中国土壤与肥料, 2024(2): 228-234. Li Z Y, Zheng L, Ming A G, et al. Determination of soil organic carbon content by steam bathflow analyzer method [J]. Soil and Fertilizer Sciences in China, 2024(2): 228-234. (in Chinese) [19] 沈佳丽, 陈颂超, 胡碧峰, 等. 基于机器学习的江汉平原土壤有机碳预测及制图[J]. 农业资源与环境学报, 2023, 40(3): 644-650. Shen J L, Chen S C, Hu B F, et al. Prediction and mapping soil organic carbon in Jianghan Plain by machine learning [J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 644-650. (in Chinese) [20] 周沛芳, 周涛, 刘霞, 等. 青海省土壤有机碳估算及其不确定性分析[J]. 地理科学进展, 2022, 41(12): 2327-2341. Zhou P F, Zhou T, Liu X, et al. Estimation of soil organic carbon and its uncertainty in Qinghai Province [J]. Progress in Geography, 2022, 41(12): 2327-2341. (in Chinese) [21] 申哲, 张认连, 龙怀玉, 等. 基于机器学习方法的宁夏南部土壤质地空间分布研究[J]. 中国农业科学, 2022, 55(15): 2961-2972. Shen Z, Zhang R L, Long H Y, et al. Research on spatial distribution of soil texture in Southern Ningxia based on machine learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961- 2972. (in Chinese) [22] Tian Y, Zhang J, Yao X, et al. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra [J]. Geoderma, 2013, 202: 161-170. [23] Keshavarzi A, Delárbol Má S, Kaya F, et al. Digital mapping of soil texture classes for efficient land management in the Piedmont Plain of Iran [J]. Soil Use and Management, 2022, 38(4): 1705-1735. [24] 乔磊, 张吴平, 黄明镜, 等. 基于MGWRK的土壤有机质制图及驱动因素研究[J]. 中国农业科学, 2020, 53(9): 1830-1844. Qiao L, Zhang W P, Huang M J, et al. Mapping of soil organic matter and its driving factors study based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844. (in Chinese) [25] 霍瑢彦町, 刘京, 张锐, 等. 黄土丘陵区土壤有机碳含量影响因素分析及空间估测[J]. 环境科学, 2025, 46(4): 2363-2372. Huo R Y D, Liu J, Zhang R, et al. Influencing factors analysis and spatial estimation of soil organic carbon content in hilly areas of Loess Plateau [J]. Environmental Science, 2025, 46(4): 2363-2372. (in Chinese) [26] Taghizadeh R, Nabiollahi K, Kerry R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran [J]. Geoderma, 2016, 266: 98-110. [27] Kaya F, Keshavarzi A, Francaviglia R, et al. Assessing machine learning-based prediction under different agricultural practices for digital mapping of soil organic carbon and available phosphorus [J]. Agriculture, 2022, 12(7): 1062. [28] 曹佳萍, 张黎明, 邱龙霞, 等. 基于稀疏样点的南方丘陵地区耕地土壤有效磷制图[J]. 中国生态农业学报, 2022, 30(2): 290-301. Cao J P, Zhang L M, Qiu L X, et al. Mapping soil available phosphorus of cultivated land in hilly region of Southern China based on sparse samples [J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 290-301. (in Chinese) [29] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. Fang K N, Wu J B, Zhu J P, et al. A review of technologies on random forests [J]. Statistics & Information Forum, 2011, 26(3): 32-38. (in Chinese) [30] 冯盼峰, 温永仙. 基于随机森林算法的两阶段变量选择研究[J]. 系统科学与数学, 2018, 38(1): 119-130. Feng P F, Wen Y X. Two-stage stepwise variable selection based on random forests [J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(1): 119-130. (in Chinese) [31] 王泽强, 张冬有, 徐夕博, 等. 基于遥感时-空-谱特征及随机森林模型的土壤重金属空间分布预测[J]. 环境科学, 2024, 45(3): 1713-1723. Wang Z Q, Zhang D Y, Xu X B, et al. Distribution prediction of soil heavy metals based on remote sensing temporal-spatial-spectral features and random forest model [J]. Environmental Science, 2024, 45(3): 1713-1723. (in Chinese) [32] 黄显培, 孟庆祥. 基于多特征卷积神经网络的哨兵二号影像地物分类[J]. 应用科学学报, 2023, 41(5): 766-776. Huang X P, Meng Q X. Land cover classification of Sentinel-2 image based on multi-feature convolution neural network [J]. Journal of Applied Sciences, 2023, 41(5): 766-776. (in Chinese) [33] 聂祥琴, 陈瀚阅, 牛铮, 等. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. Nie X Q, Chen H Y, Niu Z, et al. Digital SOC mapping in croplands using agricultural activity factors derived from time-series data in Western Fujian [J]. Journal of Geo-information Science, 2022, 24(9): 1835-1852. (in Chinese) [34] Hengl T, Heuvelink G B M, Stein A. A generic framework for spatial prediction of soil variables based on regression-Kriging [J]. Geoderma, 2004, 120(1/2): 75-93. [35] Dharumarajan S, Hegde R. Digital mapping of soil texture classes using random forest classification algorithm [J]. Soil Use and Management, 2022, 38(1): 135-149. [36] Wang Y, Luo C, Zhang W, et al. Remote sensing prediction model of cultivated land soil organic matter considering the best time window [J]. Sustainability, 2023, 15(1): 469. [37] Shi P, Six J, Sila A, et al. Towards spatially continuous mapping of soil organic carbon in croplands using multi-temporal Sentinel-2 remote sensing [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193: 187-199. [38] 王平, 华红莲, 丁智强, 等. 海拔梯度及典型土地利用类型对北热带山地土壤有机质和综合肥力的影响 [J]. 热带地理, 2023, 43(1): 144-154. Wang P, Hua H L, Ding Z Q, et al. The effects of altitude and land use on organic matter and integrated fertility of soils in the northern tropics mountain [J]. Tropic Geography, 2023, 43(1): 144-154. (in Chinese) |
[1] | HANG Yuanfang, ZHANG Penglin. Retrieval of Lake Surface Temperature in Plateau Based on Landsat-8 Images [J]. Journal of Applied Sciences, 2024, 42(6): 977-987. |
[2] | MA Dan, TANG Zhiwei, MA Xiaoyu, SHAO Erhui, HUANG Dacang. Exploration Analysis of Fire Drives in Different Chinese Ecosystems Based on Google Earth Engine [J]. Journal of Applied Sciences, 2024, 42(4): 684-694. |
[3] | YANG Guanghui, XUE Cunjin, LIU Jingyi, WU Qunyong, WU Chengbin. Algorithm for Extracting and Tracking Rainstorm Events Based on Time Series Raster-Formatted Datasets [J]. Journal of Applied Sciences, 2019, 37(4): 510-518. |
[4] | WANG Heng, ZHANG Li, BI Sen, HAN Rui-dan. Remote Sensing Monitoring and Simulation of City Development for Hainan Province [J]. Journal of Applied Sciences, 2018, 36(5): 798-807. |
[5] | FENG Fa-jie, LI Jun-ping, DING Ya-zhou, ZHU Kun, CUI Wei-hong. Target Detection from High Resolution Remote Sensing Images Based on Combination of Multi-scale Visual Features [J]. Journal of Applied Sciences, 2018, 36(3): 471-484. |
[6] | MA Dan, CHENG Hui, MAO Yan-ling, XING Shi-he. Estimation of Provincial Economic Development Levels Based on DMSP/OLS Nighttime Light Images [J]. Journal of Applied Sciences, 2017, 35(5): 647-657. |
[7] | BI Sen, WANG Heng, ZHANG Li, LI Tong, LIU Dong, HAN Rui-dan. Analysis of Expansion of Port Cities in Hainan Province Based on Impervious Surface [J]. Journal of Applied Sciences, 2017, 35(3): 346-354. |
[8] | CAO Qing, ZHANG Peng-lin, LI Wei-qing, LUAN Yi. Analysis and Spatio-temporal Dynamic Simulation of Land Use Change [J]. Journal of Applied Sciences, 2017, 35(3): 337-345. |
[9] | ZHANG Chun-sen, HU Yan, SHI Xiao-liang. Analysis of Spatial-Temporal Evolution of Vegetation Cover in Loess Plateau in Recent 33 Years Based on AVHRR NDVI and MODIS NDVI [J]. Journal of Applied Sciences, 2016, 34(6): 702-712. |
[10] | LI Yi-long, LI Xiao-hong, XUE Cun-jin, LIN Xiao-song. Marine Association Rule Mining Based on Events [J]. Journal of Applied Sciences, 2016, 34(4): 387-396. |
[11] | LI Tong, ZHANG Li, SHEN Qian, ZHANG Bing-hua. Lower Mekong River Flood Area Monitored by Multi-source Remote Sensing [J]. Journal of Applied Sciences, 2016, 34(1): 75-83. |
[12] | WANG Guo-li, ZHOU Wei, CONG Yu, GUAN Jian. SAR Image Target Detection Based on Multi-scale Auto-convolution Variance Saliency [J]. Journal of Applied Sciences, 2013, 31(6): 607-6. |
[13] | ZHU Jun-jie1,2, DU Xiao-ping1,2, FAN Xiang-tao1,2, GUO Hua-dong1,2. GIS-Constrained Multi-scale Coastal SAR Image Segmentation [J]. Journal of Applied Sciences, 2013, 31(1): 79-83. |
[14] | XUE Cun-jin1;2, WEN Xiao-yang1;2, DONG Qing1;2. Adaptive Despeckling Filter with Edge-Preservation for SAR Image [J]. Journal of Applied Sciences, 2011, 29(1): 44-50. |
[15] | XUE Cun-jin, DONG Qing. Red Tide MODIS Monitoring Based on Multi-oceanic Parameters [J]. Journal of Applied Sciences, 2010, 28(2): 147-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||