[1] Pugh T A M, Lindeskog M, Smith B, et al. Role of forest regrowth in global carbon sink dynamics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4382-4387. [2] Simard M, Pinto N, Fisher J B, et al. Mapping forest canopy height globally with spaceborne lidar [J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): G04021. [3] Jin C, Oh C Y, Shin S, et al. A comparative study to evaluate accuracy on canopy height and density using UAV, ALS, and fieldwork [J]. Forests, 2020, 11(2): 241. [4] Nandy S, Srinet R, Padalia H. Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using random forest algorithm in northwest Himalayan foothills of India [J]. Geophysical Research Letters, 2021, 48(14): e2021GL093799. [5] 董立新, 李贵才, 唐世浩. 中国南方森林冠顶高度Lidar反演——以江西省为例[J]. 遥感学报, 2011, 15(6): 1301-1314. Dong L X, Li G C, Tang S H. Inversion of forest canopy height in south of China by integrating GLAS and MERSI: the case of Jiangxi Province in China [J]. Journal of Remote Sensing, 2011, 15(6): 1301-1314. (in Chinese) [6] 倪文俭, 张大凤, 汪垚, 等. 高分二号异轨立体数据的森林高度提取[J]. 遥感学报, 2018, 22(3): 392-399. Ni W J, Zhang D F, Wang Y, et al. Extraction of forest height by using GF-2 cross-track stereo images [J]. Journal of Remote Sensing, 2018, 22(3): 392-399. (in Chinese) [7] Chopping M, Nolin A, Moisen G G, et al. Forest canopy height from the multiangle imaging spectroradiometer (MISR) assessed with high resolution discrete return lidar [J]. Remote Sensing of Environment, 2009, 113(10): 2172-2185. [8] 廖展芒. 森林地上生物量极化干涉SAR反演方法研究[D]. 成都: 电子科技大学, 2019. [9] Balzter H, Rowland C S, Saich P. Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry [J]. Remote Sensing of Environment, 2007, 108(3): 224-239. [10] Hyde P, Dubayah R, Walker W, et al. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy [J]. Remote Sensing of Environment, 2006, 102(1/2): 63-73. [11] Sadeghi Y, St-Onge B, Leblon B, et al. Canopy height model (CHM) derived from a TanDEM-X InSAR DSM and an airborne lidar DTM in boreal forest [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(1): 381-397. [12] 谢栋平, 李国元, 赵严铭, 等. 美国GEDI天基激光测高系统及其应用[J]. 国际太空, 2018(12): 39-44. Xie D P, Li G Y, Zhao Y M, et al. U.S. GEDI space-based laser altimetry system and its application [J]. Space International, 2018(12): 39-44. (in Chinese) [13] Adam M, Urbazaev M, Dubois C, et al. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: influence of environmental and acquisition parameters [J]. Remote Sensing, 2020, 12(23): 3948. [14] Qi W L, Lee S K, Hancock S, et al. Improved forest height estimation by fusion of simulated GEDI lidar data and TanDEM-X InSAR data [J]. Remote Sensing of Environment, 2019, 221: 621-634. [15] Potapov P, Li X Y, Hernandez-Serna A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data [J]. Remote Sensing of Environment, 2021, 253: 112165. [16] 朱笑笑. 基于ICESat-2和 GEDI数据的中国30米分辨率森林高度反演研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021. [17] 石希, 夏军强, 周美蓉, 等. 融合星载LiDAR系统GEDI数据与Sentinel-2影像的长江中游洲滩典型禾本科植物高度动态研究[J]. 湖泊科学, 2024, 36(2): 562-574. Shi X, Xia J Q, Zhou M R, et al. Integrating GEDI and Sentinel-2 data for mapping height dynamics of floodplain representative Poaceae vegetation in the Middle Yangtze River [J]. Journal of Lake Sciences, 2024, 36(2): 562-574. (in Chinese) [18] 吴贞江, 张佳华. 基于激光雷达卫星(GEDI) 的广东省森林冠层高度和生物量估算[J]. 测绘通报, 2023(12): 102-105. Wu Z J, Zhang J H. Forest canopy height and biomass estimation based on LiDAR satellite (GEDI) in Guangdong Province [J]. Bulletin of Surveying and Mapping, 2023(12): 102-105. (in Chinese) [19] 田镇朋, 周维, 袁敬毅, 等. 基于多源遥感数据的植被冠层高度估算[J]. 空间科学学报, 2023, 43(6): 1176-1193. Tian Z P, Zhou W, Yuan J Y, et al. Forest canopy height mapping based on multi-source remote sensing data [J]. Chinese Journal of Space Science, 2023, 43(6): 1176-1193. (in Chinese) [20] 格根塔娜, 月亮高可, 李晓松, 等. 基于GEDI和Sentinel-2的内蒙古退耕还林地块树高估测[J]. 林业科学, 2025, 61(3): 16-26. Ge G T N, Yue L G K, Li X S, et al. Estimation of tree height in the grain for green program stands of Inner Mongolia based on GEDI and Sentinel-2[J]. Scientia Silvae Sinicae, 2025, 61(3): 16-26. (in Chinese) [21] 陈兵, 赵凤君, 范太云, 等. 西昌市森林防火阻隔现状分析[J]. 林业科技通讯, 2023(5): 14-17. Chen B, Zhao F J, Fan T Y, et al. Analysis of the current situation of forest fire barriers in Xichang city [J]. Forest Science and Technology, 2023(5): 14-17. (in Chinese) [22] 袁鸷慧, 聂胜, 张合兵, 等. GEDI地面高程和森林冠层高度的精度评价与影响分析[J]. 遥感技术与应用, 2022, 37(5): 1056-1070. Yuan Z H, Nie S, Zhang H B, et al. Accuracy evaluation and impact analysis of GEDI ground elevation and canopy height [J]. Remote Sensing Technology and Application, 2022, 37(5): 1056-1070. (in Chinese) [23] Korhonen L, Hadi, Packalen P, Rautiainen M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index [J]. Remote Sensing of Environment, 2017, 195: 259-274. [24] 郭笑怡, 张洪岩, 张正祥, 等. ASTER-GDEM与SRTM3数据质量精度对比分析[J]. 遥感技术与应用, 2011, 26(3): 334-339. Guo X Y, Zhang H Y, Zhang Z X, et al. Comparative analysis of the quality and accuracy between ASTER-GDEM and SRTM3[J]. Remote Sensing Technology and Application, 2011, 26(3): 334-339. (in Chinese) [25] Healey S P, Yang Z Q, Gorelick N, et al. Highly local model calibration with a new GEDI LiDAR asset on Google earth engine reduces Landsat forest height signal saturation [J]. Remote Sensing, 2020, 12(17): 2840. [26] Guerra-Hernandez J, Pascual A. Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain [J]. Forest Ecosystems, 2021, 8(1): 14. [27] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J]. Remote Sensing of Environment, 2002, 83(1/2): 195-213. [28] Kooistra L, Salas E A L, Clevers J G P W, et al. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains [J]. Environmental Pollution, 2004, 127(2): 281-290. [29] Elvidge C D, Chen Z K. Comparison of broad-band and narrow-band red and near-infrared vegetation indices [J]. Remote sensing of environment, 1995, 54(1): 38-48. [30] Huete A R. A soil-adjusted vegetation index (SAVI) [J]. Remote Sensing of Environment, 1988, 25(3): 295-309. [31] Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves [J]. Journal of Plant Physiology, 2003, 160(3): 271-282. [32] 韩少锋, 吴迪, 张圣原, 等. 基于EMD与机器学习算法的近零能耗建筑负荷预测方法[J]. 暖通空调, 2024, 54(7): 82-89, 97. Han S F, Wu D, Zhang S Y, et al. Load forecasting method of nearly zero energy buildings based on EMD and machine learning algorithm [J]. Journal of Heating Ventilating & Air Conditioning, 2024, 54(7): 82-89, 97. (in Chinese) |