[1] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440. [2] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(12): 2481-2495. [3] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. [4] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [5] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. [6] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [7] Wang F, Jiang M, Qian C, et al. Residual attention network for image classification [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2017: 6450-6458. [8] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826. [9] Chollet F. Xception: deep learning with depthwise separable convolutions [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807. [10] Lu X Y, Zhong Y F, Zhao J. Multi-scale enhanced deep network for road detection [C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 3947-3950. [11] 韩彬彬, 张月婷, 潘宗序, 等. 残差密集空间金字塔网络的城市遥感图像分割[J]. 中国图象图形学报, 2020, 25(12): 2656-2664. Han B B, Zhang Y T, Pan Z X, et al. Residual dense spatial pyramid network for urban remote sensing image segmentation [J]. Journal of Image and Graphics, 2020, 25(12): 2656-2664. (in Chinese) [12] 范自柱, 王松, 张泓, 等. 基于W-Net的高分辨率遥感卫星图像分割[J]. 华南理工大学学报(自然科学版), 2020, 48(12): 114-124. Fan Z Z, Wang S, Zhang H, et al. W-Net-based segmentation for remote sensing satellite image of high resolution [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(12): 114-124. (in Chinese) [13] 袁伟, 周甜, 奚宗顺, 等. MUNet: 一种多尺度自适应的遥感语义分割深度学习网络[J]. 测绘科学技术学报, 2020, 37(6): 581-588. Yuan W, Zhou T, Xi Z S, et al. MUNet: a multi-branch adaptive deep learning network for remote sensing image semantic segmentation [J]. Journal of Geomatics Science and Technology, 2020, 37(6): 581-588. (in Chinese) [14] 刘航, 汪西莉. 自适应感受野机制遥感图像分割模型[J]. 中国图象图形学报, 2021, 26(2): 464-474. Liu H, Wang X L. Remote sensing image segmentation model based on an adaptive receptive field mechanism [J]. Journal of Image and Graphics, 2021, 26(2): 464-474. (in Chinese) [15] 余帅, 汪西莉. 基于多级通道注意力的遥感图像分割方法[J]. 激光与光电子学进展, 2020, 57(4): 10. Yu S, Wang X L. Remote sensing images segmentation method based on multi-level channel attention [J]. Laser & Optoelectronics Progress, 2020, 57(4): 10. (in Chinese) [16] 何青, 孟洋洋, 李华智. 多层次编码解码网络遥感图像建筑物分割[J]. 计算机应用研究, 2021, 38(8): 2510-2514. He Q, Meng Y Y, Li H Z. Multi-level encoding and decoding network remote sensing image building segmentation [J]. Application Research of Computers, 2021, 38(8): 2510-2514. (in Chinese) [17] Kittler J. On the accuracy of the Sobel edge detector [J]. Image and Vision Computing, 1983, 1(1): 37-42. [18] Xie C, Wu Y, Maaten, Feature denoising for improving adversarial robustness [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2019: 501-509. [19] Buades A, Coll B, Morel J M, et al. A non-local algorithm for image denoising [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2005, 2: 60-65. [20] Wang X, Girshick R, Gupta A, et al. Non-local neural networks [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803. [21] Cheng B, Girshick R, Dollár P, et al. Boundary IoU: improving object-centric image segmentation evaluation [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2021: 15334-15342. [22] He K M, Gkioxari G, Piotr D, et al. Mask R-CNN [C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2980-2988. [23] Maggiori E, Tarabalka Y, Charpiat G, et al. High-resolution aerial image labeling with convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 1-12. [24] Mou L C, Zhu X X. RiFCN: recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images [J/OL]. (2018-05-05) [2019-06-21]. https://arxiv.gg363.site/abs/1805.02091. [25] Li L, Liang, J, Weng M, et al. A multiple-feature reuse network to extract buildings from remote sensing imagery [J]. Remote Sensing, 2018, 10(9): 1350. [26] Ye Z, Fu Y, Gan M, et al. Building extraction from very high resolution aerial imagery using joint attention deep neural network [J]. Remote Sensing, 2019, 11(24): 2970. [27] Kang W, Xiang Y, Wang F, et al. EU-Net: an efficient fully convolutional network for building extraction from optical remote sensing images [J]. Remote Sensing, 2019, 11(23): 2813. [28] Pan X, Yang F, Gao L, et al. Building extraction from high-resolution aerial imagery using a generative adversarial network with spatial and channel attention mechanisms [J]. Remote Sensing, 2019, 11(8): 917. |