[1] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications [invited] [J]. Applied Optics, 2014, 53(28): 6554-6568. [2] Dragic P D, Cavillon M, Ballato J. Materials for optical fiber lasers: a review [J]. Applied Physics Reviews, 2018, 5(4): 041301. [3] Cadroas P, Abdeladim L, Kotov L, et al. All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy [J]. Journal of Optics, 2017, 19(6): 065506. [4] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 mm thulium fiber laser [J]. Optics and Laser Technology, 2012, 44(7): 2095-2099. [5] Anselmo C, Welschinger J Y, Cariou J P, et al. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration [J]. Optics Express, 2016, 24(12): 12588-12599. [6] Alexander V V, Ke K, Xu Z, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling [J]. Lasers in Surgery and Medicine, 2011, 43(6): 470-480. [7] Kurkov A S, Paramonov V M, Egorova O N, et al. A 1.65-mm fibre Raman amplifier [J]. Quantum Electronics, 2002, 32(8): 747-750. [8] Zhang P, Wu D, Du Q L, et al. 1.7 mm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission [J]. Applied Optics, 2017, 56(35): 9742-9748. [9] Daniel J M O, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band [J]. Optics Express, 2015, 23(14): 18269-18276. [10] Zhang L, Zhang J X, Sheng Q, et al. Watt-level 1.7-mm single-frequency thulium-doped fiber oscillator [J]. Optics Express, 2021, 29(17): 27048-27056. [11] Firstov S V, Alyshev S V, Riumkin K E, et al. Laser-active fibers doped with bismuth for a wavelength region of 1.6-1.8 mm [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 0902415. [12] Firstov S V, Alyshev S V, Riumkin K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 mm [J]. Optics Letters, 2015, 40(18): 4360-4363. [13] Firstov S, Alyshev S, Melkumov M, et al. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm [J]. Optics Letters, 2014, 39(24): 6927-6930. [14] Firstov S V, Alyshev S V, Riumkin K E, et al. Bismuth-doped fibre amplifier operating between 1600 and 1800 nm [J]. Quantum Electronics, 2015, 45(12): 1083-1085. [15] Botzung C, Monga K J J, Larochelle S. 16 dBm bismuth-doped fiber laser at 1725 nm [C]//Conference on Lasers and Electro-Optics, 2023: SF2H.6. [16] Gomolka G, Krajewska M, Khegai A, et al. Bismuth-doped fiber amplifier for the spectral region between 1630 and 1730 nm [C]//Conference on Micro-structured and Specialty Optical Fibres VII, 2021: 70-75. [17] Gomolka G, Krajewska M, Kaleta M, et al. Operation of a single-frequency bismuth-doped fiber power amplifier near 1.65 mm [J]. Photonics, 2020, 7(4): 128. [18] Zatorska M, Gomolka G, Nikodem M. Near-infrared quartz-enhanced photoacoustic spectroscopy system for ppb-level methane detection [J]. Optics Continuum, 2023, 2(2): 266-273. [19] 郭梦婷, 田晋敏, 王璠, 等. U波段放大用国产高增益掺铋高锗硅基光纤[J]. 中国激光, 2023, 50(24): 2416006. Guo M T, Tian J M, Wang F, et al. Home-made high-germanium bismuth-doped silica fiber for U-band amplification [J]. Chinese Journal of Lasers, 2023, 50(24): 2416006. (in Chinese) [20] 刘少坤, 殷晓科, 何乐, 等. 用于U波段高效放大的高锗掺铋光纤[J]. 中国激光, 2024, 51(6): 0606005. Liu S K, Yin X K, He L, et al. High-germanium bismuth-doped fiber for U-band efficiency amplification [J]. Chinese Journal of Lasers, 2024, 51(6): 0606005. (in Chinese) [21] Barnes W L, Laming R I, Tarbox E J, et al. Absorption and emission cross section of Er3+ doped silica fibers [J]. IEEE Journal of Quantum Electronics, 1991, 27(4): 1004-1010. [22] Li X, Guo M T, Shao C Y, et al. Broadband L+ near-infrared luminescence in bismuth/germanium co-doped silica glass prepared by the sol-gel method [J]. Journal of Materials Chemistry C, 2023, 11(46): 16152-16158. [23] Firstov S V, Khopin V F, Bufetov I A, et al. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers [J]. Optics Express, 2011, 19(20): 19551-19561. [24] Nemova G, Jin X, Chen L R, et al. Modeling and experimental characterization of a dualwavelength Bi-doped fiber laser with cascaded cavities [J]. Journal of the Optical Society of America B, 2020, 37(5): 1453-1460. [25] Becker P M, Olsson A A, Simpson J R. Erbium-doped fiber amplifiers: fundamentals and technology [M]. San Diego: Elsevier, 1999. [26] Denker B I, Galagan B I, Mashinsky V M, et al. Influence of SnO on bismuth emission centers in germanate glass [J]. Applied Physics B, 2019, 125(7): 136. |