[1] 晁琪, 赵燕东, 刘圣波. 多模态融合的三维语义分割算法研究[J]. 红外与激光工程, 2024, 53(5): 20240026. Zhao Q, Zhao Y D, Liu S B. Multi-modal-fusion-based 3D semantic segmentation algorithm [J]. Infrared and Laser Engineering, 2024, 53(5): 20240026. (in Chinese) [2] Poux F, Hallot P, Neuville R, et al. Smart point cloud: definition and remaining challenges [J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, IV-2/W1: 119-127. [3] Qi C R, Liu W, Wu C X, et al. Frustum PointNets for 3D object detection from RGB-D data [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 918-927. [4] 杜志强. 基于激光雷达与相机融合的智能车环境感知算法研究[D]. 吉林: 吉林大学, 2022. [5] De Gélis I, Corpetti T, Lefèvre S. Change detection needs change information: improving deep 3-D point cloud change detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5701810. [6] Fang L, Liu J, Pan Y, et al. Semantic supported urban change detection using ALS point clouds [J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103271. [7] Park J, Kim C, Kim S, et al. PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network [J]. Expert Systems with Applications, 2023, 212: 118815. [8] Kang Z Z, Yang J T, Zhong R F. A Bayesian-network-based classification method integrating airborne LiDAR data with optical images [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 10(4): 1651-1661. [9] 方远. 基于深度学习的点云语义分割方法研究[D]. 南京: 南京理工大学, 2021. [10] 夏旺. 联合点云压缩的多特征融合点云语义分割方法[J]. 地理空间信息, 2023, 21(10): 5-9. Xia W. Multi-feature fusion point cloud semantic segmentation method combined with point cloud compression [J]. Geospatial Information, 2023, 21(10): 5-9. (in Chinese) [11] Yousefhussien M, Kelbe D J, Ientilucci E J, et al. A multi-scale fully convolutional network for semantic labeling of 3D point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 191-204. [12] Zhao R B, Pang M Y, Wang J D. Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network [J]. International Journal of Geographical Information Science, 2018, 32(5): 960-979. [13] Li D W, Shi G L, Wu Y H, et al. Multi-scale neighborhood feature extraction and aggregation for point cloud segmentation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(6): 2175-2191. [14] 鲁斌, 柳杰林. 基于特征增强的三维点云语义分割[J]. 计算机应用, 2023, 43(6): 1818-1825. Lu B, Liu J L. Semantic segmentation for 3D point clouds based on feature enhancement [J]. Journal of Computer Applications, 2023, 43(6): 1818-1825. (in Chinese) [15] 佟国峰, 刘永旭, 彭浩, 等. 基于编码特征学习的3D点云语义分割网络[J]. 模式识别与人工智能, 2023, 36(4): 313-326. Tong G F, Liu Y X, Peng H, et al. 3D point cloud semantic segmentation network based on coding feature learning [J]. Pattern Recognition and Artificial Intelligence, 2023, 36(4): 313-326. (in Chinese) [16] Qi C R, Su H, Mo K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 77-85. [17] Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [J]. Advances in Neural Information Processing Systems, 2017, 30: 1020-1028. [18] Li Y Y, Bu R, Sun M C, et al. PointCNN: convolution on X-transformed points [J] Advances in Neural Information Processing Systems, 2018, 31: 820-830. [19] Zhang H, Ren K, Zheng N S, et al. A multiscale convolutional neural network with color vegetation indices for semantic labeling of point cloud [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 6501705. [20] Wu W X, Qi Z A, Li F X. PointConv: deep convolutional networks on 3D point clouds [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9613- 9622. [21] Thomas H, Qi C R, Deschaud J E, et al. KPConv: flexible and deformable convolution for point clouds [C]//2019 IEEE/CVF International Conference on Computer Vision, 2019: 6410-6419. [22] Tatarchenko M, Park J, Koltun V, et al. Tangent convolutions for dense prediction in 3D [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3887- 3896. [23] Yang J Y, Lee C, Ahn P, et al. PBP-Net: point projection and back-projection network for 3D point cloud segmentation [C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 8469-8475. [24] Huang J, You S Y. Point cloud labeling using 3D convolutional neural network [C]//201623rd International Conference on Pattern Recognition, 2016: 2670-2675. [25] Graham B, Engelcke M, Van Der Maaten L. 3D semantic segmentation with submanifold sparse convolutional networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 9224-9232. [26] Zhou H, Zhu X, Song X, et al. Cylinder3d: an effective 3D framework for driving-scene lidar semantic segmentation [DB/OL]. (2020-08-04) [2024-08-21]. https://arxiv.org/abs/2008.01550. [27] Xu J Y, Zhang R X, Dou J, et al. RPVNet: a deep and efficient range-point-voxel fusion network for LiDAR point cloud segmentation [C]//2021 IEEE/CVF International Conference on Computer Vision, 2021: 16004-16013. [28] Feng D, Haase-schütz C, Rosenbaum L, et al. Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1341-1360. [29] El Madawi K, Rashed H, El Sallab A, et al. RGB and LiDAR fusion based 3D semantic segmentation for autonomous driving [C]//2019 IEEE Intelligent Transportation Systems Conference, 2019: 7-12. [30] Vora S, Lang A H, Helou B, et al. PointPainting: sequential fusion for 3D object detection [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4603-4611. [31] Zhao L, Zhou H, Zhu X G, et al. LIF-seg: LiDAR and camera image fusion for 3D LiDAR semantic segmentation [J]. IEEE Transactions on Multimedia, 2024, 26: 1158-1168. [32] Yuan Z H, Yan X, Liao Y H, et al. X-Trans2Cap: cross-modal knowledge transfer using transformer for 3D dense captioning [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8553-8563. [33] 王丹. 复杂环境下的场景语义理解及其关键技术研究[D]. 广州: 华南理工大学, 2020. [34] 汪世豪. 基于激光雷达与工业相机数据融合的路面感知算法研究[D]. 重庆: 重庆理工大学, 2022. [35] Li J L, Dai H, Han H, et al. MSeg3D: multi-modal 3D semantic segmentation for autonomous driving [C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21694-21704. [36] Yan X, Gao J T, Zheng C D, et al. 2DPASS: 2D priors assisted semantic segmentation onLiDAR point clouds [C]//Computer Vision - ECCV 2022. Cham: Springer, 2022: 677-695. [37] Lawin F J, Danelljan M, Tosteberg P, et al. Deep projective 3D semantic segmentation [C]//Computer Analysis of Images and Patterns, 2017: 95-107. [38] Boulch A, Le Saux B, Audebert N. Unstructured point cloud semantic labeling using deep segmentation networks [C]//Workshop on 3D Object Retrieval, 2017: 17-24. [39] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, 2015: 234-241. [40] Hu Q Y, Yang B, Xie L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11105-11114. |