[1] 赵金龙, 王泺鑫, 韩海荣, 等. 森林生态系统服务功能价值评估研究进展与趋势[J]. 生态学杂志, 2013, 32(8): 2229-2237. Zhao J L, Wang L X, Han H R, et al. Research advances and trends in forest ecosystem services value evaluation [J]. Chinese Journal of Ecology, 2013, 32(8): 2229-2237. (in Chinese) [2] 曹云. 基于MODIS数据产品与Landsat遥感影像的云南省近十年森林扰动监测方法研究[D]. 南京: 南京信息工程大学, 2015. [3] 高秀清. 天然林保护工程实施成效与存在问题探讨[J]. 内蒙古林业调查设计, 2021, 44(6): 1-4. Gao X Q. Implementation effects and existing problems of natural forest protection project [J]. Inner Mongolia Forestry Investigation and Design, 2021, 44(6): 1-4. (in Chinese) [4] 王宁, 岳彩荣, 罗洪斌, 等. 森林扰动遥感影像检测方法研究进展[J]. 世界林业研究, 2022, 35(4): 40-46. Wang N, Yue C R, Luo H B, et al. Review on forest disturbance detection methods by remote sensing [J]. World Forestry Research, 2022, 35(4): 40-46. (in Chinese) [5] 钟莉, 陈芸芝, 汪小钦. 基于Landsat时序数据的森林干扰监测[J]. 林业科学, 2020, 56(5): 80-88. Zhong L, Chen Y Z, Wang X Q. Forest disturbance monitoring based on time series of Landsat data [J]. Scientia Silvae Sinicae, 2020, 56(5): 80-88. (in Chinese) [6] Potapov P V, Turubanova S A, Tyukavina A, et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive [J]. Remote Sensing of Environment, 2015, 159: 28-43. [7] Jin S, Sader S A. MODIS time-series imagery for forest disturbance detection and quantification of change [J]. Remote Sensing of Environment, 2005, 99(2): 195-204. [8] 胡圣元, 庞勇, 蒙诗栎, 等. 时间序列Landsat 8 OLI数据森林年扰动检测[J]. 林业科学研究, 2020, 33(6): 65-72. Hu S Y, Pang Y, Meng S L, et al. Annual forest disturbance detection using time series landsat 8 OLI data [J]. Forest Research, 2020, 33(6): 65-72. (in Chinese) [9] Kennedy R E, Cohen W B, Schroeder T A. Trajectory-based change detection for automated characterization of forest disturbance dynamics [J]. Remote Sensing of Environment, 2007, 110(3): 370-386. [10] Kennedy R E, Yang Z Q, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms [J]. Remote Sensing of Environment, 2010, 114(12): 2897-2910. [11] Vogelmann J E, Xian G, Homer C, et al. Monitoring gradual ecosystem change using Landsat time series analyses: case studies in selected forest and rangeland ecosystems [J]. Remote Sensing of Environment, 2012, 122: 92-105. [12] Huang C Q, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks [J]. Remote Sensing of Environment, 2010, 114(1): 183-198. [13] Huang C Q, Song K, Kim S, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis [J]. Remote Sensing of Environment, 2008, 112(3): 970-985. [14] Jin S M, Yang L M, Danielson P, et al. A comprehensive change detection method for updating the national land cover database to circa 2011[J]. Remote Sensing of Environment, 2013, 132: 159-175. [15] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data [J]. Remote Sensing of Environment, 2014, 144: 152-171. [16] Zhu Z, Woodcock C E, Holden C, et al. Generating synthetic Landsat images based on all available Landsat data: predicting Landsat surface reflectance at any given time [J]. Remote Sensing of Environment, 2015, 162: 67-83. [17] Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series [J]. Remote Sensing of Environment, 2010, 114(1): 106-115. [18] Brooks E B, Wynne R H, Thomas V A, et al. On-the-fly massively multitemporal change detection using statistical quality control charts and landsat data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3316-3332. [19] Zhu Z, Woodcock C E, Olofsson P. Continuous monitoring of forest disturbance using all available Landsat imagery [J]. Remote Sensing of Environment, 2012, 122: 75-91. [20] Zhu Z, Gallant A L, Woodcock C E, et al. Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 206-221. [21] 张来红, 秦婷婷, 泽仁卓格, 等. 基于GEE和多维特征集的锡林浩特露天矿区近30 a土地利用分类[J]. 金属矿山, 2023(3): 234-241. Zhang L H, Qin T T, Zeren Z G, et al. Land use classification of Xilinhot open-pit mining area based on GEE and multi-dimensional features in recent 30 years [J]. Metal Mine, 2023(3): 234-241. (in Chinese) [22] 李军, 张艺藂, 张彩月, 等. 基于LandTrendr和CCDC算法的神东煤炭基地植被损毁识别对比分析 [J]. 金属矿山, 2023(1): 55-64. Li J, Zhang Y C, Zhang C Y, et al. Applicability analysis of LandTrendr and CCDC algorithms for vegetation damage identification in Shendong Coal Base [J]. Metal Mine, 2023(1): 55-64. (in Chinese) [23] 陈韵如, 杨扬, 张喜亭, 等. 大兴安岭森林火烧恢复年限对土壤磷及其有效性的影响[J]. 生态学报, 2019, 39(21): 7977-7986. Chen Y R, Yang Y, Zhang X T, et al. Effects of after-burning rehabilitation times on soil phosphorus and its availability in the Daxing’ anling forests [J]. Acta Ecologica Sinica, 2019, 39(21): 7977-7986. (in Chinese) [24] 黄龙生, 王兵, 牛香, 等. 天保工程对东北和内蒙古重点国有林区保育土壤生态效益的影响[J]. 中国水土保持科学, 2017, 15(5): 67-77. Huang L S, Wang B, Niu X, et al. Evaluation on the influence of natural forest protection program on soil conservation and ecological benefits in key state-owned forest districts in Northeast China-Inner Mongolia Area [J]. Science of Soil and Water Conservation, 2017, 15(5): 67-77. (in Chinese) [25] 刘会锋, 张秋良, 王立中, 等. 大兴安岭呼中林业局30年间森林资源动态分析[J]. 林业科技, 2023, 48(1): 25-29. Liu H F, Zhang Q L, Wang L Z, et al. Analysis of forest resource dynamics and its causes during 30 years in Huzhong Forestry Bureau [J]. Forestry Science & Technology, 2023, 48(1): 25-29. (in Chinese) [26] Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery [J]. Remote Sensing of Environment, 2012, 118: 83-94. [27] Zhu Z, Woodcock C E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change [J].Remote Sensing of Environment, 2014, 152: 217-234. [28] 陈首, 石少卿, 王高胜, 等. 金属网增强遮弹层抗高速弹体侵彻的数值研究[J]. 振动与冲击, 2021, 40(13): 40-50. Chen S, Shi S Q, Wang G S, et al. Numerical study of metal mesh enhanced shielding layer against high velocity projectile penetration [J]. Journal of Vibration and Shock, 2021, 40(13): 40-50. (in Chinese) [29] Ichoku C, Karnieli A. A review of mixture modeling techniques for sub-pixel land cover estimation [J].Remote Sensing Reviews, 1996, 13(3/4): 161-186. [30] 陈宝, 刘志华, 房磊. 基于多端元光谱混合分析方法的大兴安岭火后植被盖度恢复研究[J]. 生态学报, 2019, 39(22): 8630-8638. Chen B, Liu Z H, Fang L. Forest recovery after wildfire disturbance in Great Xing’an Mountains by multiple endmember spectral mixture analysis [J]. Acta Ecologica Sinica, 2019, 39(22): 8630-8638. (in Chinese) [31] Elmore A J, Mustard J F, Manning S J, et al. Quantifying vegetation change in semiarid environments precision and accuracy of spectral mixture analysis and the normalized difference vegetation index [J]. Remote Sensing of Environment, 2000, 73(1): 87-102. [32] Souza C M, Roberts D A, Cochrane M A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires [J]. Remote Sensing of Environment, 2005, 98(2/3): 329-343. [33] 朱南燕. 基于LUCC与景观指数的乡村景观格局变化及趋势分析——以福建省永福镇为例[D]. 福州: 福建农林大学, 2019. [34] 王哲毅. 基于逻辑回归模型的个人消费信贷研究[D]. 郑州: 郑州大学, 2020. [35] 郭佳炜, 叶回春, 聂超甲, 等. 基于Sentinel-2的海南耕地复种指数监测及时空变化分析[J]. 遥感技术与应用, 2022, 37(5): 1128-1139. Guo J W, Ye H C, Nie C J, et al. Monitoring and spatial-temporal variation of multiple cropping index based on sentinel-2 in Hainan [J]. Remote Sensing Technology and Application, 2022, 37(5): 1128-1139. (in Chinese) [36] 国家林业局中南森林监测中心. 第九次全国森林资源清查广西壮族自治区森林清查成果报告(2015年) [M]. 北京: 中国林业出版社, 2016. [37] 许丽玲, 康恒元, 潘明溪, 等. 大兴安岭地区极寒天气特征分析[J]. 冰川冻土, 2022, 44(6): 1748- 1756. Xu L L, Kang H Y, Pan M X, et al. Characteristics analysis of extremely cold weather in the Greater Khingan Mountains region [J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1748-1756. (in Chinese) [38] 臧桐汝, 舒立福, 王明玉, 等. 黑龙江大兴安岭林区雷击火时空分布及驱动因素分析[J]. 西北农林科技大学学报(自然科学版), 2022, 50(12): 64-76. Zang T R, Shu L F, Wang M Y, et al. Analysis of spatial and temporal distribution and driving factors of lightning-caused fires in Daxing’anling forest region of Heilongjiang [J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(12): 64-76. (in Chinese) [39] 陈科屹, 王建军, 何友均, 等. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. Chen K Y, Wang J J, He Y J, et al. Estimations of forest carbon storage and carbon sequestration potential of key state-owned forest region in Daxing’anling, Heilongjiang Province [J]. Ecology and Environmental Sciences, 2022, 31(9): 1725-1734. (in Chinese) [40] 郑树峰, 王丽萍, 臧淑英. 大兴安岭天保工程区生态系统服务变化研究[J]. 地理科学, 2021, 41(7): 1295-1302. Zheng S F, Wang L P, Zang S Y. The change of ecosystem services of natural forest protection project regions in the Da Hinggan Mountains [J].Scientia Geographica Sinica, 2021, 41(7): 1295-1302. (in Chinese) [41] 国家林业和草原局. “十四五” 大小兴安岭林区生态保护与经济转型行动方案[R/OL]. (2022-01-14) [2023-07-27]. https://www.gov.cn/zhengce/zhengceku/2022/01/14/5668171/files/a199b0cea3e64c5fbb5965f677cabac3.pdf. [42] 黄龙生, 王兵, 牛香, 等. 东北和内蒙古重点国有林区天然林保护工程生态效益分析[J]. 中国水土保持科学, 2017, 15(1): 89-96. Huang L S, Wang B, Niu X, et al. Evaluation of ecological effects of the natural forest protection program in key state-owned forest districts in Northeast China and Inner Mongolia [J]. Science of Soil and Water Conservation, 2017, 15(1): 89-96. (in Chinese) |