Journal of Applied Sciences ›› 2020, Vol. 38 ›› Issue (2): 310-338.doi: 10.3969/j.issn.0255-8297.2020.02.007
• Optical Fiber Sensors Technology • Previous Articles
ZHAO Yunhe1,2, LIU Yunqi2
Received:
2020-01-18
Online:
2020-03-31
Published:
2020-04-01
CLC Number:
ZHAO Yunhe, LIU Yunqi. Few-Mode Fiber Long-Period Gratings—From Mode Conversion to High Sensitivity Fiber-Optic Sensing[J]. Journal of Applied Sciences, 2020, 38(2): 310-338.
[1] Richardson D J. Filling the light pipe[J]. Science, 2010, 330(6002):327-328. [2] Li G, Bai N, Zhao N, et al. Space-division multiplexing:the next frontier in optical communication[J]. Advances in Optics & Photonics, 2014, 6(4):5041-5046. [3] Ryf R, Randel S, Gnauck A H, et al. Mode-division multiplexing over 96 km of few-mode fber using coherent 66 MIMO Processing[J]. Journal of Lightwave Technology, 2012, 30(4):521-531. [4] Sillard P, Bigot-Astruc M, Molin D. Few-mode fbers for mode-division-multiplexed systems[J]. Journal of Lightwave Technology, 2014, 32(16):2824-2829. [5] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fbers[J]. Science, 2013, 340(6140):1545-1548. [6] Huang H, Milione G, Lavery M P J, et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fbre[J]. Scientifc Reports, 2015, 5:14931. [7] Li A, Wang Y, Fang J, et al. Few-mode fber multi-parameter sensor with distributed temperature and strain discrimination[J]. Optics Letters, 2015, 40:1488-1491. [8] Tang M, Zhao Z, Gan L, et al. Spatial-division multiplexed optical sensing using MCF and FMF[C]//In Proceedings of the Advanced Photonics Congress, Vancouver, BC, Canada, 2016. [9] Murshid S, Grossman B, Narakorn P. Spatial domain multiplexing:a new dimension in fber optic multiplexing[J]. Optics & Laser Technology, 2008, 40:1030-1036. [10] Salsi M, Koebele C, Sperti D, et al. Mode-division multiplexing of 2x100 Gb/s channels using an LCOS-based spatial modulator[J]. Journal of Lightwave Technology, 2012, 30(4):618-623. [11] Von Hoyningen-Huene J, Ryf R, Winzer P. LCoS-based mode shaper for few-mode fber[J]. Optics Express, 2013, 21(15):18097-18110. [12] Chen R S, Zhang X Q, Wang J H, et al. Scalable detection of photonic topological charge using radial phase grating[J]. Applied Physics Letters, 2018, 112(12):122602. [13] Bai N, Ip E, Huang Y K, et al. Mode-division multiplexed transmission with inline few-mode fber amplifer[J]. Optics Express, 2012, 20(3):2668-2680. [14] Chen H, Fontaine N K, Ryf R, et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology[J]. Journal of Lightwave Technology, 2015, 33(6):1147-1154. [15] Saitoh K, Uematsu T, Hanzawa N, et al. PLC-based LP11 mode rotator for mode-division multiplexing transmission[J]. Optics Express, 2014, 22(16):19117-19130. [16] Gross S, Riesen N, Love J D, et al. Three-dimensional ultra-roadband integrated tapered mode multiplexers[J]. Laser & Photonics Reviews, 2014, 8(5):L81-L85. [17] Dong J, Chiang K S, Jin W. Mode multiplexer based on integrated horizontal and vertical polymer waveguide couplers[J]. Optics Letters, 2015, 40(13):3125-3128. [18] Dong J, Chiang K S, Jin W. Compact three-dimensional polymer waveguide mode multiplexer[J]. Journal of Lightwave Technology, 2015, 33(22):4580-4588. [19] Chen M Y, Cao G D, Yang L, et al. Design of mode conversion waveguides based on adiabatical mode evolution for mode division multiplexing[J]. Applied Physics B, 2017, 123(10):256. [20] Wu Y, Chiang K S. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches[J]. Optics Letters, 2017, 42(3):407-410. [21] Jin W, Chiang K S. Mode switch based on electro-optic long-period waveguide grating in lithium niobate[J]. Optics Letters, 2015, 40(2):237-240. [22] Yang Y, Chen K, Jin W, et al. Widely wavelength-tunable mode converter based on polymer waveguide grating[J]. IEEE Photonics Technology Letters, 2015, 27(18):1985-1988. [23] Jin W, Chiang K S. Mode converters based on cascaded long-period waveguide gratings[J]. Optics Letters, 2016, 41(13):3130-3133. [24] Wang W, Wu J, Chen K, et al. Ultra-broadband mode converters based on length-apodized long-period waveguide gratings[J]. Optics Express, 2017, 25(13):14341-14350. [25] Park K J, Song K Y, Kim Y K, et al. Broadband mode division multiplexer using all-fber mode selective couplers[J]. Optics Express, 2016, 24(4):3543-3549. [26] Pidishety S, Srinivasan B, Brambilla G. All-fber fused coupler for stable generation of radially and azimuthally polarized beams[J]. IEEE Photonics Technology Letters, 2016, 29(1):31-34. [27] Chang S H, Moon S R, Chen H, et al. All-fber 6-mode multiplexers based on fber mode selective couplers[J]. Optics Express, 2017, 25(5):5734-5741. [28] Pidishety S, Pachava S, Gregg P, et al. Orbital angular momentum beam excitation using an all-fber weakly fused mode selective coupler[J]. Optics Letters, 2017, 42(21):4347-4350. [29] Yao S, Ren G, Shen Y, et al. Tunable orbital angular momentum generation using all-fber fused coupler[J]. IEEE Photonics Technology Letters, 2017, 30(1):99-102. [30] Leon-Saval S G, Fontaine N K, Salazar-Gil J R, et al. Mode-selective photonic lanterns for space-division multiplexing[J]. Optics Express, 2014, 22(1):1036-1044. [31] Huang B, Fontaine N K, Ryf R, et al. All-fber mode-group-selective photonic lantern using graded-index multimode fbers[J]. Optics Express, 2015, 23(1):224-234. [32] Velazquez-Benitez A, Alvarado J, Lopez-Galmiche G, et al. Six mode selective fber optic spatial multiplexer[J]. Optics Letters, 2015, 40(8):1663-1666. [33] Wu C, Liu Z, Chung K M, et al. Strong LP01 and LP11 mutual coupling conversion in a two-mode fber Bragg grating[J]. IEEE Photonics Journal, 2012, 4(4):1080-1086. [34] Ali M M, Jung Y, Lim K S, et al. Characterization of mode coupling in few-mode FBG with selective mode excitation[J]. IEEE Photonics Technology Letters, 2015, 27(16):1713-1716. [35] Sun B, Wang A, Xu L, et al. Transverse mode switchable fber laser through wavelength tuning[J]. Optics Letters, 2013, 38(5):667-669. [36] Wang L, Vaity P, Ung B, et al. Characterization of OAM fbers using fber Bragg gratings[J]. Optics Express, 2014, 22(13):15653-15661. [37] Dong J, Chiang K S. Mode-locked fber laser with transverse-mode selection based on a two-mode FBG[J]. IEEE Photonics Technology Letters, 2014, 26(17):1766-1769. [38] Ramachandran S, Wang Z, Yan M. Bandwidth control of long-period grating-based mode converters in few-mode fbers[J]. Optics Letters, 2002, 27(9):698-700. [39] Grüner-Nielsen L, Sun Y, Nicholson J W, et al. Few mode transmission fber with low DGD, low mode coupling, and low loss[J]. Journal of Lightwave Technology, 2012, 30(23):3693-3698. [40] Giles I, Obeysekara A, Chen R, et al. Fiber LPG mode converters and mode selection technique for multimode SDM[J]. IEEE Photonics Technology Letters, 2012, 24(21):1922-1925. [41] Bozinovic N, Golowich S, Kristensen P, et al. Control of orbital angular momentum of light with optical fbers[J]. Optics Letters, 2012, 37(13):2451-2153. [42] Li S, Mo Q, Hu X, et al. Controllable all-fber orbital angular momentum mode converter[J]. Optics Letters, 2015, 40(18):4376-4379. [43] Schulze C, Brüning R, Schrüter S, et al. Mode coupling in few-mode fbers induced by mechanical stress[J]. Journal of Lightwave Technology, 2015, 33(21):4488-4496. [44] Sakata H, Sano H, Harada T. Tunable mode converter using electromagnet-induced longperiod grating in two-mode fber[J]. Optical Fiber Technology, 2014, 20(3):224-227. [45] Jiang Y, Ren G, Lian Y, et al. Tunable orbital angular momentum generation in optical fbers[J]. Optics Letters, 2016, 41(15):3535-3538. [46] Jiang Y, Ren G, Li H, et al. Linearly polarized orbital angular momentum mode purity measurement in optical fbers[J]. Applied Optics, 2017, 56(7):1990-1995. [47] Zhang X, Liu Y, Wang Z, et al. LP01-LP11a mode converters based on long-period fber gratings in a two-mode polarization-maintaining photonic crystal fber[J]. Optics Express, 2018, 26(6):7013-7021. [48] Israelsen S M, Rottwitt K. Broadband higher order mode conversion using chirped microbend long period gratings[J]. Optics Express, 2016, 24(21):23969-23976. [49] Yang J, Liu H, Wen J, et al. Cylindrical vector modes based Mach-Zehnder interferometer with vortex fber for sensing applications[J]. Applied Physics Letters, 2019, 115(5):051103. [50] Dashti P Z, Alhassen F, Lee H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fber[J]. Physical Review Letters, 2006, 96(4):043604. [51] Song D R, Park H S, Kim B Y, et al. Acousto optic generation and characterization of the higher order modes in a four-mode fber for mode-division multiplexed transmission[J]. Journal of Lightwave Technology, 2014, 32(23):3932-3936. [52] Zhang W, Wei K, Huang L, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fber grating[J]. Optics Express, 2016, 24(17):19278-19285. [53] Zhang W, Huang L, Wei K, et al. High-order optical vortex generation in a few-mode fber via cascaded acoustically driven vector mode conversion[J]. Optics Letters, 2016, 41(21):5082-5085. [54] Wei K, Zhang W, Huang L, et al. Generation of cylindrical vector beams and optical vortex by two acoustically induced fber gratings with orthogonal vibration directions[J]. Optics Express, 2017, 25(3):2733-2741. [55] Zhang W, Wei K, Mao D, et al. Generation of femtosecond optical vortex pulse in fber based on an acoustically induced fber grating[J]. Optics Letters, 2017, 42(3):454-457. [56] Davis D, Gaylord T, Glytsis E, et al. CO2 laser-induced long-period fbre gratings:spectral characteristics, cladding modes and polarisation independence[J]. Electronics Letters, 1998, 34(14):1416-1417. [57] Rao Y J, Wang Y P, Ran Z L, et al. Novel fber-optic sensors based on long-period fber gratings written by high-frequency CO2 laser pulses[J]. Journal of Lightwave Technology, 2003, 21(5):1320-1327. [58] Liu Y, Chiang K S. CO2 laser writing of long-period fber gratings in optical fbers under tension[J]. Optics Letters, 2008, 33(17):1933-1935. [59] Wang B, Zhang W, Bai Z, et al. CO2-laser-induced long period fber gratings in few mode fbers[J]. IEEE Photonics Technology Letters, 2014, 27(2):145-148. [60] Dong J, Chiang K S. Temperature-insensitive mode converters with CO2-laser written longperiod fber gratings[J]. IEEE Photonics Technology Letters, 2015, 27(9):1006-1009. [61] Zhao Y, Liu Y, Zhang L, et al. Mode converter based on the long-period fber gratings written in the two-mode fber[J]. Optics Express, 2016, 24(6):6186-6195. [62] Zhao Y, Liu Y, Zhang C, et al. All-fber mode converter based on long-period fber gratings written in few-mode fber[J]. Optics Letters, 2017, 42(22):4708-4711. [63] Wu H, Gao S, Huang B, et al. All-fber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fber[J]. Optics Letters, 42(24):5210-5213. [64] Xing J, Wen J, Wang J, et al. All-fber linear polarization and orbital angular momentum modes amplifer based on few-mode erbium-doped fber and long period fber grating[J]. Chinese Optics Letters, 2018, 16(10):100604. [65] Zhao Y, Liu Z, Liu Y, et al. Ultra-broadband fber mode converter based on apodized phaseshifted long-period gratings[J]. Optics Letters, 2019, 44(24):5905-5908. [66] Feng M, Liu Y, Wang Z, et al. Ultra-broadband mode converter using cascading chirped long-period fber grating[J]. IEEE Photonics Journal, 2019, 11(6):1-10. [67] Cao X, Liu Y, Zhang L, et al. Characteristics of chiral long-period fber gratings written in the twisted two-mode fber by CO2 laser[J]. Applied Optics, 2017, 56(18):5167-5171. [68] Zhang L, Liu Y, Zhao Y, et al. High sensitivity twist sensor based on helical long-period grating written in two-mode fber[J]. IEEE Photonics Technology Letters, 2016, 28(15):1629-1632. [69] Li B, Zhan X, Tang M, et al. Long-period fber gratings inscribed in few-mode fbers for discriminative determination[J]. Optics Express, 2019, 27(19):26307-26316. [70] Zhang Y, Bai Z, Fu C, et al. Polarization-independent orbital angular momentum generator based on a chiral fber grating[J]. Optics Letters, 2019, 44(1):61-64. [71] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8):1277-1294. [72] Kumar A, Goel N K, Varshney R K. Studies on a few-mode fber-optic strain sensor based on LP01-LP02 mode interference[J]. Journal of Lightwave Technology, 2001, 19(3):358-362. [73] Weng Y, Ip E, Pan Z, et al. Few-mode distributed optical-fber sensors[C]//Optical Sensors, Optical Society of America, 2015:SeS3C-3. [74] Shi L, Zhu T, Fan Y, et al. Torsion sensing with a fber ring laser incorporating a pair of rotary long-period fber gratings[J]. Optics Communnications, 2011, 284:5299-5302. [75] Shu X W, Zhang L, Bennion I. Sensitivity characteristics of long-period fber gratings[J]. Journal of Lightwave Technology, 2002, 20(2):255-266. [76] Milione G, Nguyen T A. Leach J, et al. Using the nonseparability of vector beams to encode information for optical communication[J]. Optics Letters, 2015, 40(21):4887-4890. [77] Qiao W, Lei T, Wu Z, et al. Approach to multiplexing fber communication with cylindrical vector beams[J]. Optics Letters, 2017, 42(13):2579-2582. [78] Yurt A, Grogan M D, Ramachandran S, et al. Effect of vector asymmetry of radially polarized beams in solid immersion microscopy[J]. Optics Express, 2014, 22(6):7320-7329. [79] Gu M, Kang H, Li X. Breaking the diffraction-limited resolution barrier in fber-optical twophoton fluorescence endoscopy by an azimuthally-polarized beam[J]. Scientifc Reports, 2014, 4:3627. [80] Shi S, Ding D S, Zhou Z Y, et al. Magnetic-feld-induced rotation of light with orbital angular momentum[J]. Applied Physics Letters, 2015, 106(26):261110. [81] Yu S, Pang F, Liu H, et al. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic feld sensing[J]. Applied Physics Letters, 2017, 111(9):091107. [82] Demas J, Grogan M D W, Alkeskjold T, et al. Sensing with optical vortices in photoniccrystal fbers[J]. Optics Letters, 2012, 37(18):3768-3770. [83] Lu P, Chen Q. Asymmetrical fber Mach-Zehnder interferometer for simultaneous measurement of axial strain and temperature[J]. IEEE Photonics Journal, 2010, 2(6):942-953. |
[1] | GAO Hua, WANG Anbang, WANG Yuncai. Progress in High-Speed Classical Physical Key Distribution Techniques [J]. Journal of Applied Sciences, 2020, 38(4): 507-519. |
[2] | WANG Jian, CHEN Shi. Progress in Vortex-Multiplexed Communications Based on Conventional Fibers [J]. Journal of Applied Sciences, 2020, 38(4): 559-578. |
[3] | SHE Shengfei, MEI Lin, ZHOU Zhenyu, HOU Chaoqi, GUO Haitao. Progress in Radiation-Resistant Erbium-Doped and Erbium-Ytterbium Co-doped Fibers for Space Optical Communication [J]. Journal of Applied Sciences, 2020, 38(4): 579-594. |
[4] | QIAO Lijun, YANG Qiang, CHAI Mengmeng, WEI Xiaojing, ZHANG Jianzhong, XU Hongchun, ZHANG Mingjiang. Progress in Chaotic Semiconductor Lasers [J]. Journal of Applied Sciences, 2020, 38(4): 595-611. |
[5] | HAO Tengfei, SHI Nuannuan, LI Wei, ZHU Ninghua, LI Ming. Multi-band Linearly Frequency Modulated Fourier Domain Mode-Locked Optoelectronic Oscillator [J]. Journal of Applied Sciences, 2020, 38(4): 640-646. |
[6] | CHI Nan, NIU Wenqing, JIA Junlian, HA Yinaer. Anti-nonlinear Support Vector Machine Based Geometrically Shaping Visible Light Communication System [J]. Journal of Applied Sciences, 2020, 38(4): 647-658. |
[7] | ZHANG Yuxin, LI Xi, SONG Yang, LI Changhui. Urban Spatial Form Analysis of GBA Based on “LJ1-01” Nighttime Light Remote Sensing Images [J]. Journal of Applied Sciences, 2020, 38(3): 466-477. |
[8] | WANG Mengxuan, ZHANG Sheng, WANG Yue, LEI Ting, DU Wen. Research and Application of Improved CRNN Model in Classification of Alarm Texts [J]. Journal of Applied Sciences, 2020, 38(3): 388-400. |
[9] | ZHAO Chunliu, LI Jiali, XU Ben, GONG Huaping, WANG Dongning. Research Progress of Fiber Micro Cavity Fabry-Perot Interference Sensors [J]. Journal of Applied Sciences, 2020, 38(2): 226-259. |
[10] | GENG Youfu, LI Xuejin. Research on Temperature Sensors Based on Microstructured Fiber [J]. Journal of Applied Sciences, 2020, 38(2): 260-278. |
[11] | CHEN Jiageng, LIU Qingwen, ZHAO Shuangxiang, He Zuyuan. Progress in High Resolution Demodulation Techniquesfor Wavelength-Encoded Optical Fiber Sensor [J]. Journal of Applied Sciences, 2020, 38(2): 279-295. |
[12] | YANG Yanan, LI Yiming, NIE Lihai, ZHANG Ning, ZHAO Laiping. Cost-Efficient Task Scheduling in Geo-distributed Datacenters [J]. Journal of Applied Sciences, 2019, 37(6): 859-874. |
[13] | LIU Yangyi, SU Chengli, SHI Huiyuan, LI Ping, BO Guihua. Wireless Temperature Control System for High Temperature Heating Furnace Based on PFC-PID Algorithm [J]. Journal of Applied Sciences, 2019, 37(6): 875-886. |
[14] | LI Songbin, YANG Jie, LIU Peng, WANG Lingrui. Steganalysis of Motion Vector-Based Steganography in H.264/AVC by Correlation Network Model [J]. Journal of Applied Sciences, 2019, 37(5): 663-672. |
[15] | WANG Jingwei, WU Shaohua, QU Zhiguo. CFMoment: Closed Frequent Itemsets Mining Based on Data Stream [J]. Journal of Applied Sciences, 2019, 37(3): 389-397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||