Journal of Applied Sciences ›› 2021, Vol. 39 ›› Issue (5): 733-746.doi: 10.3969/j.issn.0255-8297.2021.05.003
• Optical Fiber Sensors Technology • Previous Articles Next Articles
ZHUO Linqing1, TANG Jieyuan2, ZHU Wenguo3, ZHENG Huadan2, LU Huihui2, GUAN Heyuan2, LUO Yunhan1,2, ZHONG Yongchun1, YU Jianhui1, ZHANG Jun1, CHEN Zhe2,3
Received:
2021-06-10
Published:
2021-10-11
CLC Number:
ZHUO Linqing, TANG Jieyuan, ZHU Wenguo, ZHENG Huadan, LU Huihui, GUAN Heyuan, LUO Yunhan, ZHONG Yongchun, YU Jianhui, ZHANG Jun, CHEN Zhe. Review of Sensing Technology Research Based on Side Polished Fiber[J]. Journal of Applied Sciences, 2021, 39(5): 733-746.
[1] Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2):57-79. [2] Dikovska A O, Atanasova G B, Nedyalkov N N, et al. Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber[J]. Sensors and Actuators B:Chemical, 2010, 146(1):331-336. [3] Zhao J, Cao S Q, Liao C R, et al. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber[J]. Sensors and Actuators B:Chemical, 2016, 230:206-211. [4] Jiang Z P, Dong J L, Hu S Q, et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid[J]. Optics Letters, 2018, 43(19):4743-4746. [5] Lu P, Lalam N, Badar M, et al. Distributed optical fiber sensing:review and perspective[J]. Applied Physics Reviews, 2019, 6(4):041302. [6] Lou J, Wang Y, Tong L. Microfiber optical sensors:a review[J]. Sensors, 2014, 14(4):5823-5844. [7] Bergh R A, Kotler G, Shaw H J. Single-mode fiber optic directional coupler[J]. Electronics Letters, 1980, 16(7):260-261. [8] Consales M, Ricciardi A, Crescitelli A, et al. Lab-on-fiber technology:toward multifunctional optical nanoprobes[J]. ACS Nano, 2012, 6(4):3163-3170. [9] Consales M, Pisco M, Cusano A. Lab-on-fiber technology:a new avenue for optical nanosensors[J]. Photonic Sensors, 2012, 2(4):289-314. [10] Ricciardi A, Crescitelli A, Vaiano P, et al. Lab-on-fiber technology:a new vision for chemical and biological sensing[J]. Analyst, 2015, 140(24):8068-8079. [11] Tseng S M, Chen C L. Side-polished fibers[J]. Applied Optics, 1992, 31(18):3438-3447. [12] Chen Z, Bai C. Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing[C]//Asia-Pacific Optical Fiber Sensors Conference. IEEE, 2008:1-4. [13] Dong H Z, Chen L H, Zhou J J, et al. Coreless side-polished fiber:a novel fiber structure for multimode interference and highly sensitive refractive index sensors[J]. Optics Express, 2017, 25(5):5352-5365. [14] Zhao J, Yin G, Liao C, et al. Rough side-polished fiber with surface scratches for sensing applications[J]. IEEE Photonics Journal, 2015, 7(3):1-7. [15] 裴丽, 赵瑞峰, 宁提纲, 等. 大长度高精度侧面研磨光纤关键技术及应用[J]. 红外与激光工程, 2010, 39(1):86-90, 96. Pei L, Zhao R F, Ning T G, et al. Key technologies for side-grinding optical fiber with long-length and high-precision and their applications[J]. Infrared and Laser Engineering, 2010, 39(1):86-90, 96. (in Chinese) [16] Lee S S, Chae H D, Kim D H, et al. Continuous photonic microwave true-time delay using a side-polished fiber Bragg grating with heating electrode[J]. Microwave and Optical Technology Letters, 2005, 44(1):35-37. [17] Tang J Y, Zhou J J, Guan J W, et al. Fabrication of side-polished single mode-multimodesingle mode fiber and its characteristics of refractive index sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2):238-245. [18] Dong J L, Zhang Y X, Wang Y J, et al. Side-polished few-mode fiber based surface plasmon resonance biosensor[J]. Optics Express, 2019, 27(8):11348-11360. [19] Bilro L, Alberto N J, Sá L M, et al. Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor[J]. Journal of Lightwave Technology, 2011, 29(6):864-870. [20] Ahmad H, Hassan H, Zulkifli A Z, et al. Characterization of arc-shaped side-polished fiber[J]. Optical and Quantum Electronics, 2017, 49(6):1-13. [21] Hussey C D, Minelly J D. Optical fibre polishing with a motor-driven polishing wheel[J]. Electronics Letters, 1988, 24(13):805-807. [22] 陈哲, 沈丽达, 江沛凡, 等. 光纤侧边抛磨装置及其工艺方法:1631616[P]. 2005-06-29. [23] 张亚勋. 光纤侧面抛磨关键技术研究[D]. 哈尔滨:哈尔滨工程大学, 2012. [24] 程立坤. 光纤器件研抛新技术研究[D]. 哈尔滨:哈尔滨工程大学, 2009. [25] He C, Fang J, Zhang Y, et al. High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane[J]. Optics Express, 2018, 26(8):9686-9699. [26] 江沛凡, 陈哲, 曾应新, 等. 侧边抛磨光纤的光传输特性研究[J]. 半导体光电, 2006, 27(5):578-581. Jiang P F, Chen Z, Zeng Y X, et al. Optical propagation characteristics of side-polished fibers[J]. Semiconductor Optoelectronics, 2006, 27(5):578-581. (in Chinese) [27] 肖雅婷, 陈哲, 张凌童, 等. 基于侧边抛磨光纤的全光纤在线光功率监测器[J]. 应用光学, 2010, 31(4):620-625. Xiao Y T, Chen Z, Zhang L T, et al. All fiber online optical power monitor based on sidepolished fiber[J]. Journal of Applied Optics, 2010, 31(4):620-625. (in Chinese) [28] 余金波, 陈哲, 罗云瀚, 等. 基于侧边抛磨光纤的侧面熔粘耦合的光纤耦合器[J]. 光电子激光, 2013, 24(5):897-902. Yu J B, Chen Z, Luo Y H, et al. A fused side adhered optical fiber coupler based on sidepolished fibers[J]. Journal of Optoelectronics Laser, 2013, 24(5):897-902. (in Chinese) [29] 白春河, 罗云瀚, 陈哲, 等. 基于侧边抛磨光纤倏逝场的折射率传感特性[J]. 光子学报, 2013, 42(10):1182-1186. Bai C H, Luo Y H, Chen Z, et al. Characteristics of side-polished fiber in refractive index sensing[J]. Acta Photonica Sinica, 2013, 42(10):1182-1186. (in Chinese) [30] 白春河, 陈哲, 李丰丽, 等. 侧边抛磨光纤中传输光功率变化的实验研究[J]. 光子学报, 2007, 36(6):1068-1072. Bai C H, Chen Z, Li F L, et al. Experimental investigations of transmitting optical power in side-polished fiber[J]. Acta Photonica Sinica, 2007, 36(6):1068-1072. (in Chinese) [31] Chen C H, Chao T C, Li W Y, et al. Novel D-type fiber optic localized plasmon resonance sensor realized by femtosecond laser engraving[J]. Journal of Laser Micro, 2010, 5(1):1-5. [32] 宁超. 基于飞秒激光制备的光纤传感器的研究[D]. 哈尔滨:哈尔滨工业大学, 2011. [33] 邓旺, 周剑英, 孙小燕, 等. D型光纤传感器的飞秒激光加工方法[J]. 中南大学学报(自然科学版), 2015, 46(12):4476-4480. Deng W, Zhou J Y, Sun X Y, et al. Femtosecond laser micromachining of D-shape optical fiber sensor[J]. Journal of Central South University (Science and Technology), 2015, 46(12):4476-4480. (in Chinese) [34] Chen C H, Tang J I, Wu W T, et al. Fabrication of the novel multi-D-shape fiber sensor by femtosecond laser machining with the diffractive optical element[C]//2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP). IEEE, 2010:382-386. [35] 王文辕, 文建湘, 庞拂飞, 等. 飞秒激光制备的全单模光纤法布里-珀罗干涉高温传感器[J]. 中国激光, 2012, 39(10):85-89. Wang W Y, Wen J X, Pang F F, et al. All single-mode fiber fabry-pérot interferometric high temperature sensor fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 2012, 39(10):85-89. (in Chinese) [36] 陈小龙, 罗云瀚, 徐梦云, 等. 基于侧边抛磨光纤表面等离子体共振的折射率和温度传感研究[J]. 光学学报, 2014, 34(2):68-73. Chen X L, Luo Y H, Xu M Y, et al. Refractive index and temperature sensing based on surface plasmon resonance fabricated on a side-polished fiber[J]. Acta Optica Sinica, 2014, 34(2):68-73. (in Chinese) [37] Dong H, Yu J, Guan H, et al. Coreless side-polished fiber for multimode interference and highly sensitive refractive index sensing[C]//Bio-Optics:Design and Application. Optical Society of America, 2017:BoW4A.5 [38] Lu J J, Li Y, Han Y H, et al. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating[J]. Applied Optics, 2018, 57(19):5268-5272. [39] Wu J J, Li S G, Wang X Y, et al. Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance[J]. Applied Optics, 2018, 57(15):4002-4007. [40] Tang J Y, Zhou J J, Guan J W, et al. Fabrication of side-polished single mode-multimodesingle mode fiber and its characteristics of refractive index sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2):238-245. [41] Zhang L, Gu F X, Lou J Y, et al. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film[J]. Optics Express, 2008, 16(17):13349-13353. [42] Ouyang T H, Lin L M, Xia K, et al. Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing[J]. Optics Express, 2017, 25(9):9823-9833. [43] Tripathy A, Pramanik S, Cho J, et al. Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors[J]. Sensors, 2014, 14(9):16343-16422. [44] Huang Y M, Zhu W G, Li Z B, et al. High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film[J]. Sensors and Actuators B:Chemical, 2018, 255:57-69. [45] Luo Y H, Chen C Y, Xia K, et al. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor[J]. Optics Express, 2016, 24(8):8956-8966. [46] Tang L, Feng Y M, Xing Z S, et al. High-sensitivity humidity sensing of side-polished optical fiber with polymer nanostructure cladding[J]. Applied Optics, 2018, 57(10):2539-2544. [47] Li D Q, Lu H H, Qiu W T, et al. Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring[J]. Optics Express, 2017, 25(23):28407-28416. [48] Zhang H, Gao S C, Luo Y H, et al. Ultrasensitive Mach-Zehnder interferometric temperature sensor based on liquid-filled D-shaped fiber cavity[J]. Sensors, 2018, 18(4):1239. [49] Zhang J, Liao G Z, Jin S S, et al. All-fiber-optic temperature sensor based on reduced graphene oxide[J]. Laser Physics Letters, 2014, 11(3):035901. [50] Lu H H, Tian Z W, Yu H P, et al. Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing[J]. Optics Express, 2014, 22(26):32502-32508. [51] Li S, Xia L, Chen Z, et al. Colloidal crystal cladding fiber based on side-polished fiber and its temperature sensing[J]. Optical and Quantum Electronics, 2017, 49(2):1-10. [52] He C Y, Fang J B, Zhang Y N, et al. High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane[J]. Optics Express, 2018, 26(8):9686-9699. [53] Kim K T, Moon N I, Kim H K. A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate[J]. Sensors and Actuators A:Physical, 2010, 160(1/2):19-21. [54] Schem M, Bredol M. The use of glassfibres coated with terbium doped Sol-gel films in UV sensors[J]. Optical Materials, 2004, 26(2):137-140. [55] Yu J H, Li H Z, Hsiao V K, et al. A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber[J]. Measurement Science and Technology, 2013, 24(9):094019. [56] Fu W H, Hsiao V K S, Tang J Y, et al. All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals[J]. Sensors and Actuators B:Chemical, 2011, 156(1):423-427. [57] Enz E, Lagerwall J. Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal[J]. Journal of Materials Chemistry, 2010, 20(33):6866-6872. [58] Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors[J]. Advanced Materials, 2010, 22(31):3366-3387. [59] Bungabong M L, Ong P B, Yang K L. Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor[J]. Sensors and Actuators B:Chemical, 2010, 148(2):420-426. [60] Sivakumar S, Wark K L, Gupta J K, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses[J]. Advanced Functional Materials, 2009, 19(14):2260-2265. [61] Kim H K, Wang X S, Fujita Y, et al. Reversible photo-mechanical switching behavior of azobenzene-containing semi-interpenetrating network under UV and visible light irradiation[J]. Macromolecular Chemistry and Physics, 2005, 206(20):2106-2111. [62] Yee M J, Mubarak N M, Abdullah E C, et al. Carbon nanomaterials based films for strain sensing application-a review[J]. Nano-Structures & Nano-Objects, 2019, 18:100312. [63] Liehr S, Lenke P, Wendt M, et al. Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring[J]. IEEE Sensors Journal, 2009, 9(11):1330-1338. [64] Qazi H, Mohammad A, Ahmad H, et al. D-shaped polarization maintaining fiber sensor for strain and temperature monitoring[J]. Sensors, 2016, 16(9):1505. [65] Raju A P A, Lewis A, Derby B, et al. Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy[J]. Advanced Functional Materials, 2014, 24(19):2865-2874. [66] Song D W, Chai Q, Liu Y L, et al. A simultaneous strain and temperature sensing module based on FBG-in-SMS[J]. Measurement Science and Technology, 2014, 25(5):055205. [67] Suzuki K, Yataka K, Okumiya Y, et al. Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for human motion detection[J]. ACS Sensors, 2016, 1(6):817-825. [68] Lo Y L, Chuang C H, Lin Z W. Ultrahigh sensitivity polarimetric strain sensor based upon Dshaped optical fiber and surface plasmon resonance technology[J]. Optics Letters, 2011, 36(13):2489-2491. [69] Ying Y, Wang J K, Xu K, et al. High sensitivity D-shaped optical fiber strain sensor based on surface plasmon resonance[J]. Optics Communications, 2020, 460:125147. [70] Teixeira J G V, Leite I T, Silva S, et al. Advanced fiber-optic acoustic sensors[J]. Photonic Sensors, 2014, 4(3):198-208. [71] 高椿明, 聂峰, 张萍, 等. 光纤声传感器综述[J]. 光电工程, 2018, 45(9):116-125. Gao C M, Nie F, Zhang P, et al. Optical fiber acoustic sensors[J]. Opto-Electronic Engineering, 2018, 45(9):116-125. (in Chinese) [72] Fischer B, Wintner E. Ultra-sensitive (acoustic) pressure sensor with high temporal resolution[C]//Optical Sensors:Optical Society of America, 2011:SMB5. [73] Li C, Peng X B, Zhang H, et al. A sensitivity-enhanced flexible acoustic sensor using sidepolished fiber Bragg grating[J]. Measurement, 2018, 117:252-257. [74] Wang W H, Wu N, Tian Y, et al. Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber[J]. Optics Express, 2009, 17(19):16613-16618. [75] Zhang H, Chen Y F, Feng X J, et al. Long-range surface plasmon resonance sensor based on side-polished fiber for biosensing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(2):1-9. [76] Singh P. SPR biosensors:historical perspectives and current challenges[J]. Sensors and Actuators B:Chemical, 2016, 229:110-130. [77] Zhang N M Y, Li K W, Shum P P, et al. Hybrid graphene/gold plasmonic fiber-optic biosensor[J]. Advanced Materials Technologies, 2017, 2(2):1600185. [78] Yu H X, Chong Y, Zhang P H, et al. A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection[J]. Talanta, 2020, 219:121324. [79] Tang J Y, Li Z B, Xie M Y, et al. Optical fiber bio-sensor for phospholipase using liquid crystal[J]. Biosensors and Bioelectronics, 2020, 170:112547. [80] Tang J Y, Fang J B, Liang Y L, et al. All-fiber-optic VOC gas sensor based on side-polished fiber wavelength selectively coupled with cholesteric liquid crystal film[J]. Sensors and Actuators B:Chemical, 2018, 273:1816-1826. [81] Xiao Y, Yu J H, Shun L, et al. Reduced graphene oxide for fiber-optic toluene gas sensing[J]. Optics Express, 2016, 24(25):28290-28302. [82] Shan H, Liu C B, Liu L, et al. Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes[J]. ACS Applied Materials & Interfaces, 2013, 5(13):6376-6380. [83] Parmar M, Balamurugan C, Lee D W. PANI and graphene/PANI nanocomposite filmscomparative toluene gas sensing behavior[J]. Sensors, 2013, 13(12):16611-16624. [84] Bora T, Fallah H, Chaudhari M, et al. Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing[J]. Sensors and Actuators B:Chemical, 2014, 202:543-550. [85] Saidi T, Zaim O, Moufid M, et al. Exhaled breath analysis using electronic nose and gas chromatography-mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects[J]. Sensors and Actuators B:Chemical, 2018, 257:178-188. [86] Zimmermann S, Barth S, Baether W K M, et al. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents[J]. Analytical Chemistry, 2008, 80(17):6671-6676. [87] Li Z, Liao C, Song J, et al. Ultrasensitive magnetic field sensor based on an in-fiber MachZehnder interferometer with a magnetic fluid component[J]. Photonics Research, 2016, 4(5):197-201. [88] Chen Y F, Hu Y C, Zhang Y X, et al. A portable smartphone-based vector-magnetometer illuminated and imaged via a side-polished-fiber functionalized with magnetic fluid[J]. IEEE Sensors Journal, 2020, 20(3):1283-1289. [89] Chen Y F, Sun W T, Zhang Y X, et al. Magnetic nanoparticles functionalized few-modefiber-based plasmonic vector magnetometer[J]. Nanomaterials, 2019, 9(5):785. [90] Jiang Z P, Dong J L, Hu S Q, et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid[J]. Optics Letters, 2018, 43(19):4743-4746. |
[1] | YANG Jing, JIN Yuan, YE Peng, GUAN Chunying. Fiber Devices Based on Eccentric Hole-Assisted Dual-Core Fiber and Applications [J]. Journal of Applied Sciences, 2021, 39(5): 858-880. |
[2] | LIU Shen, LIAO Chang-rui, WANG Yi-ping. Optical Fiber Sensors Based on In-Fiber Air Bubble Microcavirties [J]. Journal of Applied Sciences, 2018, 36(1): 104-147. |
[3] | YU Ji-bo, WANG Xian-fan, YANG Wen-lei, WANG Peng-fei. Tapered Optical Fiber Sensing Technology [J]. Journal of Applied Sciences, 2018, 36(1): 148-175. |
[4] | WANG Dong-ning, CHEN Wei-ping, LIU Ye, YANG Yu-bang, LI Wei-wei, LIU Jing, YANG Fan, LI Liu-jiang. Miniature Lab on/in Fiber [J]. Journal of Applied Sciences, 2018, 36(1): 176-208. |
[5] | ZHANG Xiao-bei, XIAO Hai, WANG Ting-yun. Recent Advances in Capillary Based Optical Fiber Sensors [J]. Journal of Applied Sciences, 2017, 35(4): 523-536. |
[6] | WANG Chao, JIN Wei, HO Hoi-lut, YANG Fan, QI Yun. Suspended-Core Photonic Microcells-Flexible and Highly Efficient Lab-in-Fiber Platforms [J]. Journal of Applied Sciences, 2017, 35(4): 460-468. |
[7] | YANG Xing-hua, YUAN Ting-ting, ZHAO Qi-kai, ZHOU Mei-hua. In-Fiber Integrated Optofluidic Sensors [J]. Journal of Applied Sciences, 2017, 35(4): 503-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||