Journal of Applied Sciences ›› 2022, Vol. 40 ›› Issue (6): 918-940.doi: 10.3969/j.issn.0255-8297.2022.06.004
• Signal and Information Processing • Previous Articles
ZHANG Xiaofei1,2, WANG Cheng3, LI Jianfeng1,2, WU Qihui1
Received:
2021-11-30
Published:
2022-12-03
CLC Number:
ZHANG Xiaofei, WANG Cheng, LI Jianfeng, WU Qihui. Research Progress on Frequency Diversity Array Radar: from System Framework to Parameter Estimation[J]. Journal of Applied Sciences, 2022, 40(6): 918-940.
[1] Richards M A. Fundamentals of radar signal processing[M]. New York:McGrow-Hill, 2005. [2] 张光义. 相控阵雷达原理[M]. 北京:国防工业出版社, 2009. [3] Klemm R. Principles of space-time adaptive processing[M]. London:IET, 2006. [4] Li J, Stoica P. MIMO radar signal processing[M]. New York, USA:John Wiley & Sons, Inc., 2009. [5] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging:degrees of freedom and resolution[C]//The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. [6] Fishler E, Haimovich A, Blum R, et al. MIMO radar:an idea whose time has come[C]//Proceedings of the 2004 IEEE Radar Conference, 2004:71-78. [7] Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1):116-119. [8] Farooq J, Temple M A, Saville M A. Exploiting frequency diverse array processing to improve SAR image resolution[C]//IEEE Radar Conference, 2008:1-5. [9] Farooq J. Frequency diversity for improving synthetic aperture radar imaging[D]. WrightPatterson AFB:Air Force Institute Technology, 2009. [10] Chen Y G, Li Y T, Wu Y H, et al. Research on the linear frequency diverse array performance[C]//IEEE 10th International Conference on Signal Processing Proceedings, 2010:2324-2327. [11] Wang W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8):4073-4081. [12] Wang W Q. Phased-MIMO radar with frequency diversity for range-dependent beamforming[J]. IEEE Sensors Journal, 2013, 13(4):1320-1328. [13] Sammartino P F, Baker C J, Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1):201-222. [14] Sammartino P F, Baker C J, Griffiths H D. Range-angle dependent waveform[C]//IEEE Radar Conference, 2010:511-515. [15] Sammartino P F, Baker C J, Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1):201-222. [16] Wang W, So H C, Shao H. Nonuniform frequency diverse array for range-angle imaging of targets[J]. IEEE Sensors Journal, 2014, 14(8):2469-2476. [17] Chen H, Shao H, Wang W. Joint sparsity-based range-angle-dependent beampattern synthesis for frequency diverse array[J]. IEEE Access, 2017, 5:15152-15161. [18] Khan W, Qureshi I M, Saeed S. Frequency diverse array radar with logarithmically increasing frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14:499-502. [19] Gao K, Wang W Q, Cai J, et al. Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J]. IET Microwaves Antennas & Propagation, 2016, 10(8):880-884. [20] Wang Y, Huang G, Li W. Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16:1003-1006. [21] Basit A, Qureshi I M, Khan W, et al. Beam pattern synthesis for an FDA radar with hamming window-based nonuniform frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16:2283-2286. [22] Sarah S, Mansoor Q I, Waseem K, et al. Tangent hyperbolic circular frequency diverse array radars[J]. Journal of Engineering, 2016, 1(3):23-28. [23] Zhe W, Wang W Q, Shao H. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets[J]. Eurasip Journal on Advances in Signal Processing, 2016, 1:124. [24] Liao Y, Wang J, Liu Q H. Transmit beampattern synthesis for frequency diverse array with particle swarm frequency offset optimization[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2):892-901. [25] Liao Y, Tang H, Chen X, et al. Frequency diverse array beampattern synthesis with taylor windowed frequency offsets[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(11):1901-1905. [26] Huang P C, Liu C L. Coarray-based pattern synthesis for minimum hole arrays[C]//2020 International Symposium on Antennas and Propagation (ISAP), 2021:443-444. [27] Xu J, Liao G, Zhu S, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113:9-17. [28] Xu J, Zhu S, Liao G. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3):1602-1610. [29] Xiang Z, Chen B. Optimal frequency increment selection in frequency diverse multiple-input- multiple-output radar[J]. IET Radar, Sonar and Navigation, 2016, 10(8):1431-1438. [30] Wen C, Peng J, Zhou Y, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10):4154-4166. [31] Lan L, Liao G, Xu J, et al. Suppression approach to main-beam deceptive jamming in FDAMIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6:34582-34597. [32] Tan M, Wang C, Xue B, et al. A novel deceptive jamming approach against frequency diverse array radar[J]. IEEE Sensors Journal, 2021, 21(6):8323-8332. [33] Wang Y, Zhu S. Range ambiguous clutter suppression for FDA-MIMO forward looking airborne radar based on main lobe correction[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3):2032-2046. [34] Baizert P, Hale T B, Temple M A, et al. Forward-looking radar GMTI benefits using a linear frequency diverse array[J]. Electronics Letters, 2006, 42(22):1311-1312. [35] Xu J, Zhu S, Liao G. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8):1620-1631. [36] Xu J, Liao G, So H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9):5352-5364. [37] Xu J, Liao G, Zhang Y, et al. An adaptive range-angle-doppler processing approach for FDAMIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2):309-320. [38] Xu J, Liao G, Huang L, et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar[J]. IEEE Transactions on Signal Processing, 2017, 65(4):973-984. [39] Wu X, Liu Z, Xie R. Clutter suppression for hypersonic vehicle-borne radar with frequency diverse array[J]. Journal of Systems Engineering and Electronics, 2017, 28(3):481-492. [40] Wang W, Shao H. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1):106-114. [41] Wang W, So H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8):2000-2011. [42] Wang W. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):3057-3067. [43] Wang S L, Xu Z, Liu X, et al. Subarray-based frequency diverse array for target range-angle localization with monopulse processing[J]. IEEE Sensors Journal, 2018, 18(14):5937-5947. [44] Wang Y, Wang W, Chen H, et al. Optimal frequency diverse subarray design with CramérRao lower bound minimization[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14:1188-1191. [45] Gao K, Wang W Q, Cai J. Frequency diverse array and MIMO hybrid radar transmitter design via Cramér-Rao lower bound minimisation[J]. IET Radar, Sonar and Navigation, 2016, 10(9):1660-1670. [46] Liu Y, Ruan H, Wang L, et al. The random frequency diverse array:a new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2):295-308. [47] Xu J, Liao G, Zhu S, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13):3396-3410. [48] Liu Q, Xu J, Ding Z, et al. Target localization with jammer removal using frequency diverse array[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10):11685-11696. [49] Lan L, Rosamilia M, Aubry A, et al. Single-snapshot angle and incremental range estimation for FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6):3705-3718. [50] Feng M, Cui Z, Yang Y, et al. A reduced-dimension music algorithm for monostatic FDAMIMO radar[J]. IEEE Communications Letters, 2021, 25(4):1279-1282. [51] He J, Li L, Shu T. Sparse nested arrays with spatially spread square acoustic vector sensors for high accuracy underdetermined direction finding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4):2324-2336. [52] Zheng Z, Mu S. 2D direction finding with pair-matching operation for L-shaped nested array[J]. IEEE Communications Letters, 2021, 25(3):975-979. [53] Li J, He Y, Ma P, et al. Direction of arrival estimation using sparse nested arrays with coprime displacement[J]. IEEE Sensors Journal, 2021, 21(4):5282-5291. [54] Zheng Z, Yang C, Wang W Q, et al. Robust DOA estimation against mutual coupling with nested array[J]. IEEE Signal Processing Letters, 2020, 27:1360-1364. [55] Shu T, Li L, He J. Near-field source localization with two-level nested arrays[J]. IEEE Communications Letters, 2020, 24(11):2488-2492. [56] Wang C, Li Z, Zhang X. FDA-MIMO for joint angle and range estimation:unfolded coprime framework and parameter estimation algorithm[J]. IET Radar, Sonar & Navigation, 2020, 14(6):917-926. [57] Wang C, Zhang X, Li J. FDA-MIMO radar for 3D localization:virtual coprime planar array with unfolded coprime frequency offset framework and TRD-MUSIC algorithm[J]. Digital Signal Processing, 2021, 113(10):1-15. [58] Wang C, Zhang X, Li J. FDA-MIMO radar for DOD, DOA, and range estimation:SA-MCFO framework and RDMD algorithm[J]. Signal Processing, 2021, 188:1-11. [59] Wang C, Zheng W, Gong P, et al. Joint angle and range estimation in the FDA-MIMO radar:the reduced-dimension root MUSIC algorithm[J]. Wireless Personal Communications, 2020, 115(5):2515-2533. [60] Wang C, Zheng W, Li J, et al. Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar[J]. ETRI Journal, 2020, 43(1):120-132. |
[1] | HAO Tengfei, SHI Nuannuan, LI Wei, ZHU Ninghua, LI Ming. Multi-band Linearly Frequency Modulated Fourier Domain Mode-Locked Optoelectronic Oscillator [J]. Journal of Applied Sciences, 2020, 38(4): 640-646. |
[2] | CUI Chen, LIANG Hao, YU Jian. Joint DOD and DOA Estimation with High Accuracy in Bistatic MIMO Radar Using Sparse Array [J]. Journal of Applied Sciences, 2015, 33(5): 527-540. |
[3] | LI Hui-jun1,2,3, ZHONG Ruo-fei1,2,3. Numerical Study on the Relationship between Amplitudes of Ground Penetrating Radar Wave and Water Content in Soil [J]. Journal of Applied Sciences, 2015, 33(1): 41-49. |
[4] | WANG Jia-jia, XIE Ya-nan, TAN Zi-miao. Frequency-Modulated and Phase-Modulated Orthogonal Waveform Design for MIMO Radar Based on Chaotic Map [J]. Journal of Applied Sciences, 2014, 32(6): 588-595. |
[5] | ZHANG Guo1,2, ZHENG Yu-zhi1. Optimization Estimation for Spaceborne InSAR Baseline Using Quadratic Polynomial [J]. Journal of Applied Sciences, 2014, 32(4): 409-415. |
[6] | DENG Zhen-miao, YE Lin-mei, FU Mao-zhong, ZHANG Yi-xiong. Radar Super-Resolution Imaging Based on Compressive Sensing [J]. Journal of Applied Sciences, 2014, 32(2): 133-140. |
[7] | WU Hao, SU Wei-min, GU Hong. Passive Multistatic Radar Imaging Based on Compressed Sensing Joint Sparse Aperture Autofocusing [J]. Journal of Applied Sciences, 2014, 32(2): 141-148. |
[8] | SUN Zhong-wei, ZHANG Xiao-fei, WU Hai-lang, LI Jian-feng. Multi-dimensional Angle Estimation in Bistatic MIMO Radar for L-Shaped Array with Propagator Method [J]. Journal of Applied Sciences, 2014, 32(1): 57-64. |
[9] | WANG Guo-li, ZHOU Wei, CONG Yu, GUAN Jian. SAR Image Target Detection Based on Multi-scale Auto-convolution Variance Saliency [J]. Journal of Applied Sciences, 2013, 31(6): 607-6. |
[10] | CHEN Gang, GU Hong, SU Wei-min, WU Hao. Optimization of MIMO Radar Arrays in Near Field [J]. Journal of Applied Sciences, 2013, 31(4): 387-393. |
[11] | ZHU Jun-jie1,2, DU Xiao-ping1,2, FAN Xiang-tao1,2, GUO Hua-dong1,2. GIS-Constrained Multi-scale Coastal SAR Image Segmentation [J]. Journal of Applied Sciences, 2013, 31(1): 79-83. |
[12] | CHENG Yuan-bing, GU Hong, SU Wei-min. Multi-target Localization for Bistatic MIMO Radar [J]. Journal of Applied Sciences, 2013, 31(1): 53-58. |
[13] | LIU Shuai-qi, HU Shao-hai, XIAO Yang. De-noising of SAR Images Based on Shearlets Transform [J]. Journal of Applied Sciences, 2012, 30(6): 629-634. |
[14] | YU Jing1, YANG Zhi-wei2, LI Ya-an1. SAR Image Resolution Selection for Ground Moving Target Indication [J]. Journal of Applied Sciences, 2012, 30(5): 493-497. |
[15] | WU Hao, SU Wei-min, GU Hong. Tracking a Variable Number of Targets in Cluttered Environment [J]. Journal of Applied Sciences, 2012, 30(3): 263-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||