[1] 嵇介曲, 朱琨, 易畅言, 等. 多无人机辅助移动边缘计算中的任务卸载和轨迹优化[J]. 物联网学报, 2021, 5(1): 27-35. Ji J Q, Zhu K, Yi C Y, et al. Joint task offloading and trajectory optimization for multi-UAV assisted mobile edge computing [J]. Chinese Journal on Internet of Things, 2021, 5(1): 27-35. (in Chinese) [2] Yin S, Yu F R. Resource allocation and trajectory design in UAV-aided cellular networks based on multiagent reinforcement learning [J]. IEEE Internet of Things Journal, 2022, 9(4): 2933-2943. [3] 崔方宇, 蔡云龙, 赵民建. 基于NOMA的无人机轨迹与功率联合优化[J]. 杭州电子科技大学学报(自然科学版), 2020, 40(1): 14-20. Cui F Y, Cai Y L, Zhao M J. Joint trajectory design and power allocation for NOMAbased mobile-UAV communication networks [J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2020, 40(1): 14-20. (in Chinese) [4] Deng D, Dand S, Li X, et al. Joint optimization for covert communications in UAV-assisted NOMA networks [J]. IEEE Transactions on Vehicular Technology, 2023: 1-15. [5] Liu S, Huang Y, Hu H, et al. Minimizing energy consumption in UAV assisted NOMA-MEC networks [J]. Physical Communication, 2023, 60: 10216. [6] Zhong R, Liu X, Liu Y, et al. Multi-agent reinforcement learning in NOMA-aided UAV networks for cellular offloading [J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1498-1512. [7] Hourani A A, Kandeepan S, Lardner S. Optimal LAP altitude for maximum coverage [J]. IEEE Wireless Communications Letters, 2014, 3(6): 569-572. [8] Zhao N, Cheng Y, Pei Y, et al. Deep reinforcement learning for trajectory design and power allocation in UAV networks [C]//IEEE International Conference on Communications, 2020: 1-6. [9] Bai S, Song S, Liang S, et al. UAV maneuvering decision-making algorithm based on twin delayed deep deterministic policy gradient algorithm [J]. Journal of Artificial Intelligence and Technology, 2021, 2(1): 16-22. [10] 3RD GENERATION PARTNERSHIP PROJECT. TS 36.21, Release 17 Description [EB/OL]. (2006-10-03) [2023-05-31]. https://www.3gpp.org/ftp/Specs/archive/36_series/36.211/. |