[1] 罗凡, 熊邦书, 余磊, 等. 基于DBAFFNet的低照度图像增强[J]. 应用科学学报, 2023, 41(3): 476-487. Luo F, Xiong B S, Yu L, et al. Low-light image enhancement based on DBAFFNet [J]. Journal of Applied Sciences, 2023, 41(3): 476-487. (in Chinese) [2] Ren W Q, Liu S F, Ma L, et al. Low-light image enhancement via a deep hybrid network [J]. IEEE Transactions on Image Processing, 2019, 28(9): 4364-4375. [3] Zhang Y H, Zhang J W, Guo X J. Kindling the darkness: a practical low-light image enhancer [C]//27th ACM International Conference on Multimedia, 2019: 1632-1640. [4] Guo C L, Li C Y, Guo J C, et al. Zero-reference deep curve estimation for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1777-1786. [5] Liu R S, Ma L, Zhang J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 10556-10565. [6] Ma L, Ma T Y, Liu R S, et al. Toward fast, flexible, and robust low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5627- 5636. [7] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008 [8] Xu X G, Wang R X, Fu C W, et al. SNR-aware low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 17693-17703. [9] Wang Z D, Cun X D, Bao J M, et al. Uformer: a general U-shaped transformer for image restoration [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 17662-17672. [10] Liu Z, Lin Y T, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]//IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 9992- 10002. [11] Zamir S W, Arora A, Khan S, et al. Restormer: efficient transformer for high-resolution image restoration [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5718-5729. [12] Wang T, Zhang K H, Shen T R, et al. Ultra-high-definition low-light image enhancement: a benchmark and transformer-based method [J]. AAAI Conference on Artificial Intelligence, 2023, 37(3): 2654-2662. [13] Chen X, Li H, Li M Q, et al. Learning a sparse transformer network for effective image deraining [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 5896-5905. [14] Wang C, Pan J, Wu X M. Structural prior guided generative adversarial transformers for low-light image enhancement[DB/OL]. (2022-07-16) [2025-01-02]. https://export.arxiv.org/abs/2207.07828 [15] Tanaka M, Shibata T, Okutomi M. Gradient-based low-light image enhancement [C]//IEEE International Conference on Consumer Electronics (ICCE), 2019: 1-2. [16] Liang D, Li L, Wei M Q, et al. Semantically contrastive learning for low-light image enhancement [J]. AAAI Conference on Artificial Intelligence, 2022, 36(2): 1555-1563. [17] Zhu M F, Pan P B, Chen W, et al. EEMEFN: low-light image enhancement via edgeenhanced multi-exposure fusion network [J]. AAAI Conference on Artificial Intelligence, 2020, 34(7): 13106-13113. [18] Rana D, Lal K J, Parihar A S. Edge guided low-light image enhancement [C]//5th International Conference on Intelligent Computing and Control Systems (ICICCS), 2021: 871-877. [19] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. 2015: 234-241. [20] Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1874-1883. [21] Fang F M, Li J C, Yuan Y T, et al. Multilevel edge features guided network for image denoising [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9): 3956- 3970. [22] Hendrycks D, Gimpel K. Gaussian error linear units (GELUs) [DB/OL]. (2016-06-17) [2025- 01-02]. https://arxiv.org/abs/1606.08415. [23] Wei C, Wang W, Yang W. Deep retinex decomposition for low-light enhancement [C]//British Machine Vision Conference (BMVC), 2018: 155-165. [24] Yang W H, Wang W J, Huang H F, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement [J]. IEEE Transactions on Image Processing, 2021, 30: 2072-2086. [25] Fu Z Q, Yang Y, Tu X T, et al. Learning a simple low-light image enhancer from paired low-light instances [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 22252-22261. [26] Cai Y H, Bian H, Lin J, et al. Retinexformer: one-stage retinex-based transformer for low-light image enhancement [C]//IEEE/CVF International Conference on Computer Vision (ICCV), 2023: 12470-12479. [27] Jiang Y F, Gong X Y, Liu D, et al. EnlightenGAN: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. [28] Li C Y, Guo C L, Loy C C. Learning to enhance low-light image via zero-reference deep curve estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238. [29] Zhang Y H, Guo X J, Ma J Y, et al. Beyond brightening low-light images [J]. International Journal of Computer Vision, 2021, 129(4): 1013-1037. |