[1] 曾乐平, 熊邦书, 易晖, 等. 复杂背景和光照下双旋翼直升机桨尖间距实时测量方法[J]. 应用科学学报, 2024, 42(2): 314-322. Zeng L P, Xiong B S, Yi H, et al. Real-time measurement for tip clearance of twin-rotor helicopter under complex background and illumination [J]. Journal of Applied Sciences, 2024, 42(2): 314-322. (in Chinese) [2] 左承林, 马军, 岳廷瑞, 等. 基于双目立体视觉的直升机旋翼桨叶位移变形测量方法[J]. 实验流体力学, 2020, 34(1): 87-95. Zuo C L, Ma J, Yue T R, et al. Displacement and deformation measurement method of helicopter rotor blade based on binocular stereo vision [J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 87-95. (in Chinese) [3] 廖会生, 李新民, 陈垚锋, 等. 基于数字影像的直升机旋翼桨尖运动测量[J]. 直升机技术, 2022(3): 38-42. Liao H S, Li X M, Chen Y F, et al. Blade tip displacement measurement of helicopter based on digital image [J]. Helicopter Technique, 2022(3): 38-42. (in Chinese) [4] 李紫薇, 刘金龙, 杨慧珍, 等. 基于深度学习的低照度图像增强算法综述[J]. 应用光学, 2024, 45(6): 1095-1107. Li Z W, Liu J L, Yang H Z, et al. Review of low-illuminance image enhancement algorithm based on deep learning [J]. Journal of Applied Optics, 2024, 45(6): 1095-1107. (in Chinese) [5] Lore K G, Akintayo A, Sarkar S. LLNet: a deep autoencoder approach to natural low-light image enhancement [J]. Pattern Recognition, 2017, 61: 650-662. [6] Wei C, Wang W J, Yang W H, et al. Deep Retinex decomposition for low-light enhancement [DB/OL]. (2018-08-14) [2025-01-25]. https://arxiv.org/abs/1808.04560v1. [7] Wu W H, Weng J, Zhang P P, et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5891-5900. [8] Jiang Y, Li L, Zhu J, et al. DEANet: decomposition enhancement and adjustment network for low-light image enhancement [J]. Tsinghua Science and Technology, 2023, 28(4): 743-753. [9] Jiang Y, Gong X, Liu D, et al. Deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. [10] Zhao Z J, Xiong B S, Wang L, et al. RetinexDIP: a unified deep framework for low-light image enhancement [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1076-1088. [11] Zhang L, Zhang L J, Liu X, et al. Zero-shot restoration of back-lit images using deep internal learning [C]//27th ACM International Conference on Multimedia, 2019: 1623-1631. [12] Chen P D, Zhang J, Gao Y B, et al. A lightweight RGB superposition effect adjustment network for low-light image enhancement and denoising [J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107234. [13] Mansour Y, Heckel R. Zero-shot noise2noise: efficient image denoising without any data [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14018-14027. [14] Lv F F, Lu F, Wu J H, et al. MBLLEN: low-light image/video enhancement using CNNs [C]//British Machine Vision Conference (BMVC), 2018, 220(1): 4. [15] Liu R S, Ma L, Zhang J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 10556-10565. [16] Ma L, Ma T Y, Liu R S, et al. Toward fast, flexible, and robust low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5627- 5636. [17] Wang W, Yang H, Fu J, et al. Zero-shot low-light enhancement via physical quadruple priors [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024: 26057-26066. [18] Fu Z Q, Yang Y, Tu X T, et al. Learning a simple low-light image enhancer from paired low-light instances [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 22252-22261. [19] Lee C, Lee C, Kim C S. Contrast enhancement based on layered difference representation of 2D histograms [J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372-5384. [20] Guo X, Li Y, Ling H. LIME: low-light image enhancement via illumination map estimation [J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. [21] Ma K, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion [J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345-3356. [22] Vasileios Vonikakis datasets [EB/OL]. [2024-12-29]. https://sites.google.com/site/vonikakis/datasets. [23] Wang S H, Zheng J, Hu H M, et al. Naturalness preserved enhancement algorithm for nonuniform illumination images [J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538- 3548. [24] Li W C, Wen D Y, Zhu J H, et al. ZSDECNet: a zero-shot deep learning framework for image exposure correction [J]. Neurocomputing, 2025, 627: 129399. |