[1] 王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020, 4(1): 19-32. Wang C X, Huang J, Wang H M, et al. 6G oriented wireless communication channel characteristics analysis and modeling [J]. Chinese Journal on Internet of Things, 2020, 4(1): 19-32. (in Chinese) [2] 肖亮, 庞文镇, 康姗, 等. 机舱环境路径损耗和功率覆盖特征分析[J]. 电波科学学报, 2012, 27(1): 24-29. Xiao L, Pang W Z, Kang S, et al. Characteristics of path loss and power coverage in cabin environment [J]. Chinese Journal of Radio Science, 2012, 27(1): 24-29. (in Chinese) [3] Cogalan T, Videv S, Haas H. Aircraft in-cabin radio channel characterization: from measurement to model [C]//2017 IEEE Global Communications Conference, 2017: 1-6. [4] Chen Q, Tan P H, Lin Z W, et al. Design and optimization of IEEE 802.11ad-based dense network in cabin environment [C]//2017 IEEE Global Communications Conference, 2017: 1-6. [5] Wen J X, Zhang Y, Yang G S, et al. Path loss prediction based on machine learning methods for aircraft cabin environments [J]. IEEE Access, 2019, 7: 159251-159261. [6] Yesilkaya A, Haas H. Channel modelling and error performance investigation for reading lights based in-flight LiFi [J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4949- 4964. [7] Sun S, Rappaport T S, Thomas T A, et al. A preliminary 3D mmwave indoor office channel model [C]//2015 International Conference on Computing, Networking and Communications (ICNC), 2015: 26-31. [8] He D P, Guan K, García-loygorri J M, et al. Channel characterization and hybrid modeling for millimeter-wave communications in metro train [J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12408-12417. [9] 谢文平, 尹禄高, 陈小敏, 等. 塔架环境通信网络信道模型及性能研究[J]. 信号处理, 2021, 37(11): 2077-2083. Xie W P, Yin L G, Chen X M, et al. Channel model and performance evaluation for communication networks inside tower scenarios [J]. Journal of Signal Processing, 2021, 37(11): 2077-2083. (in Chinese) [10] Li Y P, Zhang J H, Tang P, et al. Clustering in the wireless channel with a power weighted statistical mixture model in indoor scenario [J]. China Communications, 2019, 16(7): 83-95. [11] Xie W P, Chen X M, Mao K, et al. Channel modeling and analysis for the sensor network inside tower buildings [J]. Symmetry, 2021, 13(11): 2154. [12] Zhu Q M, Bai F, Pang M H, et al. Geometry-based stochastic line-of-sight probability model for A2G channels under urban scenarios [J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5784-5794. [13] Mao K, Zhu Q M, Song M Z, et al. Machine learning-based 3D channel modeling for U2V mmWave communications [J]. IEEE Internet of Things Journal, 2022, 9(18): 17592-17607. [14] Yang C F, Wu B C, Ko C J. A ray-tracing method for modeling indoor wave propagation and penetration [J]. IEEE Transactions on Antennas and Propagation, 1998, 46(6): 907-919. [15] International Telecommunication Union. Effects of building materials and structures on radiowave propagation above about 100 MHz: ITU-RP. 2040-1 SPANISH-2015[S]. Geneva: IXITU, 2015. [16] Yin L G, Xie W P, Huang H, et al. Channel propagation characteristics for the communications inside tower structure buildings [J]. Progress in Electromagnetics Research M, 2021, 103: 71-81. [17] Moayyed M T, Antonescu B, Basagni S. Clustering algorithms and validation indices for mmWave radio multipath propagation [C]//2019 Wireless Telecommunications Symposium (WTS). IEEE, 2019: 1-7. [18] Thomas T A, Nguyen H C, Maccartney G R, et al. 3D mmwave channel model proposal [C]//2014 IEEE 80th Vehicular Technology Conference (VTC), 2014: 1-6. |