[1] Peng J Y, Yu K, Wang J, et al. Mining painted cultural relic patterns based on principal component images selection and image fusion of hyperspectral images [J]. Journal of Cultural Heritage, 2019, 36: 32-39. [2] 胡颖. 壁画类文物保护技术研究[J]. 东方收藏, 2022(5): 104-106. Hu Y. Research on the protection technology of mural cultural relics [J]. Oriental Collection, 2022(5): 104-106. (in Chinese) [3] Jiang Y M, Shi H J, Wen Z M, et al. The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions [J]. Geomorphology, 2020, 350: 106893. [4] Dabove P, Di Pietra V, Lingua A M. Close range photogrammetry with tablet technology in post-earthquake scenario: Sant’Agostino church in Amatrice [J]. Geoinformatica, 2018, 22(2): 463-477. [5] Kogbara R B, Masad E A, Woodward D, et al. Relating surface texture parameters from close range photogrammetry to Grip-Tester pavement friction measurements [J]. Construction and Building Materials, 2018, 166: 227-240. [6] Li L P, Lan H X, Peng J B. Loess erosion patterns on a cut-slope revealed by LiDAR scanning [J]. Engineering Geology, 2020, 268: 105516. [7] Qin R J, Tian J J, Reinartz P. 3D change detection–approaches and applications [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 41-56. [8] Liu Z, Gong P, Shi P J, et al. Automated building change detection using UltraCamD images and existing CAD data [J]. International Journal of Remote Sensing, 2010, 31(6): 1505-1517. [9] Cucci C, Picollo M, Chiarantini L, et al. Remote-sensing hyperspectral imaging for applications in archaeological areas: non-invasive investigations on wall paintings and on mural inscriptions in the Pompeii site [J]. Microchemical Journal, 2020, 158: 105082. [10] 施文灶, 毛政元. 基于图分割的高分辨率遥感影像建筑物变化检测研究[J]. 地球信息科学学报, 2016, 18(3): 423-432. Shi W Z, Mao Z Y. The research on building change detection from high resolution remotely sensed imagery based on graph-cut segmentation [J]. Journal of Geo-Information Science, 2016, 18(3): 423-432. (in Chinese) [11] Shen P Q, Mei L Y, Ye Z Y, et al. Building change detection in remote sensing imagery with focal self-attention and multi-level feature fusion [J]. Electronics, 2023, 12(13): 2796. [12] 霍洁. 古代壁画保护修复设计方法研究[J]. 文物鉴定与鉴赏, 2023(14): 38-41. Huo J. Research on design methods for the protection and restoration of ancient mural paintings [J]. Identification and Appreciation to Cultural Relics, 2023(14): 38-41. (in Chinese) [13] 刘晓博. 彩绘壁画损害状态的光纤相干成像检测技术研究[D]. 西安: 西北大学, 2018. [14] Mandlburger G, Wenzel K, Spitzer A, et al. Improved topographic models via concurrent airborne LiDAR and dense image matching [J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-2/W4: 259-266. [15] Wendy R, Luigi B, Katey C, et al. Research and development of a photogrammetric condition monitoring workflow to improve change detection in wall paintings [J]. Studies in Conservation, 2022, 67(Suppl.1): 235-244. [16] 张振超, 张永生, 戴晨光, 等. 机载激光点云与摄影测量点云非监督建筑物变化检测[J]. 测绘科学技术学报, 2019, 36(5): 523-530. Zhang Z C, Zhang Y S, Dai C G, et al. An unsupervised method for change detection between airborne laser scanning and photogrammetric data [J]. Journal of Geomatics Science and Technology, 2019, 36(5): 523-530. (in Chinese) [17] Du S J, Zhang Y S, Qin R J, et al. Building change detection using old aerial images and new LiDAR data [J]. Remote Sensing, 2016, 8(12): 1030-1051. [18] Peng D F, Zhang Y J, Xiong X D. 3D building change detection by combining LiDAR point cloud and aerial imagery [J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 462-468. [19] 詹俏, 甘淑, 袁希平, 等. 泥石流沟谷滑坡体的点云采样分析及变化检测[J]. 激光与红外, 2020, 50(2): 136-142. Zhan Q, Gan S, Yuan X P, et al. Point cloud sampling analysis and change detection of landslide body in debris flow valley [J]. Laser & Infrared, 2020, 50(2): 136-142. (in Chinese) [20] Giacomo P, Antonio G, Ali A, et al. 3D data fusion for historical analyses of heritage buildings using thermal images: the palacio de colomina as a case study [J]. Remote Sensing, 2022, 14(22): 5699. [21] 程丕, 张荣春, 衣雪峰. 多源点云数据联合的古文物精细三维建模[C]//江苏省测绘地理信息学会. 2019: 35-39. [22] 陈斯亮. UAV航测结合三维激光扫描的古栈道测绘建模[J]. 测绘科学, 2017, 42(8): 152-156. Chen S L. Application of UAV aerophotography and TLS in surveying and modeling of ancient gallery road [J]. Science of Surveying and Mapping, 2017, 42(8): 152-156. (in Chinese) [23] 杨帆, 唐伟智, 吴昊. 改进迭代最近点算法的点云自动精配准[J]. 遥感信息, 2018, 33(2): 40-45. Yang F, Tang W Z, Wu H. Automatic registration of point clouds based on improved iterative closest point algorithm [J]. Remote Sensing Information, 2018, 33(2): 40-45. (in Chinese) [24] 欧阳峻岭. 基于高斯映射的点云分类算法研究[D]. 成都: 成都理工大学, 2018. [25] 徐卫青, 陈西江, 章光, 等. 一种基于高斯映射的三维点云特征线提取方法[J]. 激光与光电子学进展, 2019, 56(9): 175-181. Xu W Q, Chen X J, Zhang G, et al. Method for extraction of feature lines of three-dimensional laser point cloud based on Gaussian map [J]. Laser & Optoelectronics Progress, 2019, 56(9): 175-181. (in Chinese) [26] 朱飞雪. 三维点云模型轮廓线的绘制[D]. 济南: 山东大学, 2008. [27] 李锵, 段子阳, 张一帆, 等. 基于跨尺度随机游走的立体匹配算法[J]. 华南理工大学学报(自然科学版), 2020, 48(1): 84-92. Li Q, Duan Z Y, Zhang Y F, et al. Stereo matching algorithm based on cross-scale random walk [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(1): 84-92. (in Chinese) [28] 张莲, 杨森淋, 李梦天, 等. 基于快速FCM聚类的自动随机游走算法在红外图像分割的应用[J]. 电子世界, 2020(10): 102-104. Zhang L, Yang S L, Li M T, et al. Application of automatic random walk algorithm based on fast FCM clustering in infrared image segmentation [J]. Electronics World, 2020(10): 102-104. (in Chinese) [29] Osada R, Funkhouser T, Chazelle B, et al. Shape distributions [J]. ACM Transactions on Graphics, 2002, 21(4): 807-832. |