[1] 施少怀. 一种基于用户倾向的微博好友推荐算法[D]. 哈尔滨: 哈尔滨工业大学, 2013. [2] Xu P H, Hu W B, Wu J, et al. Link prediction with signed latent factors in signed social networks [C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1046-1054. [3] Li Y J, Peng Y, Zhang Z, et al. Matching user accounts across social networks based on username and display name [J]. World Wide Web, 2019, 22(3): 1075-1097. [4] Zhou X P, Liang X, Du X Y, et al. Structure based user identification across social networks [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6): 1178-1191. [5] Liu L, Zhang Y M, Fu S, et al. ABNE: an attention-based network embedding for user alignment across social networks [J]. IEEE Access, 2019, 7: 23595-23605. [6] Santos M L B. The “so-called” UGC: an updated definition of user-generated content in the age of social media [J]. Online Information Review, 2022, 46(1): 95-113. [7] Li Y J, Zhang Z, Peng Y, et al. Matching user accounts based on user generated content across social networks [J]. Future Generation Computer Systems, 2018, 83: 104-115. [8] Nie Y P, Jia Y, Li S D, et al. Identifying users across social networks based on dynamic core interests [J]. Neurocomputing, 2016, 210: 107-115. [9] Li Y J, Su Z T, Yang J Q, et al. Exploiting similarities of user friendship networks across social networks for user identification [J]. Information Sciences, 2020, 506: 78-98. [10] Zhang J, Chen B, Wang X M, et al. MEgo2Vec: embedding matched ego networks for user alignment across social networks [C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 327-336. [11] Zeng W J, Tang R, Wang H Z, et al. User identification based on integrating multiple user information across online social networks [J]. Security and Communication Networks, 2021: 5533417. [12] Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system [C]//Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining, 2016: 785-794. [13] Kusner M J, Sun Y, Kolkin N I, et al. From word embeddings to document distances [J]. 32nd International Conference on Machine Learning, 2015, 2957-2966. [14] Tang J, Qu M, Wang M Z, et al. LINE: large-scale information network embedding [DB/OL]. 2015[2022-12-01]. http://arxiv.org/abs/1503.03578v1. [15] Lawrence P, Sergey B, Rajeev M, et al. The PageRank citation ranking: bringing order to the web [J]. Stanford Digital Libraries Working Paper, 1998, 98: 161-172. [16] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space [DB/OL]. 2013[2022-12-01]. https://arxiv.org/abs/1301.3781. [17] Rousseeuw P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis [J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. [18] Kong X N, Zhang J W, Yu P S. Inferring anchor links across multiple heterogeneous social networks [C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, 2013: 179-188. [19] Macqueen J. Some methods for classfication and analysis of multivariate observations [C]//Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probablity, 1965: 281. [20] Cao X Z, Yu Y. ASNets: a benchmark dataset of aligned social networks for cross-platform user modeling [C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management, 2016: 1881-1884. [21] Gao H, Wang Y Q, Shao J L, et al. UGCLink: user identity linkage by modeling user generated contents with knowledge distillation [C]//2021 IEEE International Conference on Big Data (Big Data), 2021: 607-613. |