[1] Reichenbach P, Rossi M, Malamud B D, et al. A review of statistically-based landslide susceptibility models [J]. Earth Science Reviews, 2018, 180: 60-91. [2] Rahmati O, Haghizadeh A, Stefanidis S. Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization; Gorganrood River basin, Iran [J]. Water Resources Management, 2016, 30(3): 1131-1150. [3] Youssef A M, Pradhan B, Sefry S A. Flash flood susceptibility assessment in Jeddah City (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models [J]. Environmental Earth Sciences, 2015, 75(1): 12. [4] Zhong M, Zeng T, Jiang T, et al. A Copula-based multivariate probability analysis for flash flood risk under the compound effect of soil moisture and rainfall [J]. Water Resources Management, 2021, 35(1): 83-98. [5] Khosravi K, Pham B T, Chapi K, et al. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran [J]. Science of the Total Environment, 2018, 627: 744-755. [6] Costache R. Flash-flood potential assessment in the upper and middle sector of Prahova River catchment (Romania): a comparative approach between four hybrid models [J]. Science of the Total Environment, 2019, 659: 1115-1134. [7] Hosseini F S, Choubin B, Mosavi A, et al. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method [J]. Science of the Total Environment, 2020, 711: 135161. [8] Arabameri A, Saha S, Chen W, et al. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques [J]. Journal of Hydrology, 2020, 587: 125007. [9] Bui D T, Tsangaratos P, Ngo P T T, et al. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods [J]. Science of the Total Environment, 2019, 668: 1038-1054. [10] Ma M H, Zhao G, He B S, et al. XGBoost-based method for flash flood risk assessment [J]. Journal of Hydrology, 2021, 598: 126382. [11] Chen W, Li Y, Xue W F, et al. Modeling flood susceptibility using data-driven approaches of Naïve Bayes tree, alternating decision tree, and random forest methods [J]. Science of the Total Environment, 2020, 701: 134979. [12] Dodangeh E, Choubin B, Eigdir A N, et al. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction [J]. Science of the Total Environment, 2020, 705: 135983. [13] Bandara K, Bergmeir C, Smyl S. Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach [J]. Expert Systems with Applications, 2020, 140: 112896. [14] Lin K R, Chen H Y, Xu C Y, et al. Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm [J]. Journal of Hydrology, 2020, 584: 124696. [15] Jiang S J, Zheng Y, Wang C, et al. Uncovering flooding mechanisms across the contiguous United States through interpretive deep learning on representative catchments [J]. Water Resources Research, 2022, 58(1): e2021WR030185. [16] Zhai X Y, Zhang Y Y, Zhang Y Q, et al. Simulating flash flood hydrographs and behavior metrics across China: implications for flash flood management [J]. Science of the Total Environment, 2021, 763: 142977. [17] 张帆, 张永勇, 陈俊旭, 等. 多种机器学习模型对不同洪水类型特征指标模拟效果评估[J]. 地理科学进展, 2022, 41(7): 1239-1250. Zhang F, Zhang Y Y, Chen J X, et al. Performance of multiple machine learning model simulation of process characteristic indicators of different flood types [J]. Progress in Geography, 2022, 41(7): 1239-1250. (in Chinese) [18] Xu H S, Ma C, Lian J J, et al. Urban flooding risk assessment based on an integrated Kmeans cluster algorithm and improved entropy weight method in the region of Haikou, China [J]. Journal of Hydrology, 2018, 563: 975-986. [19] 樊建勇, 单九生, 管珉, 等. 江西省小流域山洪灾害临界雨量计算分析[J]. 气象, 2012, 38(9): 1110- 1114. Fan J Y, Shan J S, Guan M, et al. Research on analysis and calculation method of critical precipitation of mountain torrents in Jiangxi Province [J]. Meteorological Monthly, 2012, 38(9): 1110-1114. (in Chinese) [20] 张若婧, 陈跃红, 张晓祥, 等. 基于参数最优地理探测器的江西省山洪灾害时空格局与驱动力研究[J]. 地理与地理信息科学, 2021, 37(4): 72-80. Zhang R J, Chen Y H, Zhang X X, et al. Spatial-temporal pattern and driving factors of flash flood disasters in Jiangxi Province analyzed by optimal parameters-based geographical detector [J]. Geography and Geo-Information Science, 2021, 37(4): 72-80. (in Chinese) [21] 郑彦辰, 李建柱, 荣佑同, 等. 降雨时空分布量化及其在洪水过程分类中的应用[J]. 水利学报, 2022, 53(5): 560-573. Zheng Y C, Li J Z, Rong Y T, et al. Quantification of rainfall spatial and temporal distribution characteristics on the flood hydrograph and its application in flood type classification [J]. Journal of Hydraulic Engineering, 2022, 53(5): 560-573. (in Chinese) [22] Tien B D, Pradhan B, Nampak H, et al. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS [J]. Journal of Hydrology, 2016, 540: 317-330. [23] Liu Y S, Yang Z S, Huang Y H, et al. Spatiotemporal evolution and driving factors of China's flash flood disasters since 1949[J]. Science China Earth Sciences, 2018, 61(12): 1804-1817. [24] Ragettli S, Zhou J, Wang H, et al. Modeling flash floods in ungauged mountain catchments of China: a decision tree learning approach for parameter regionalization [J]. Journal of Hydrology, 2017, 555: 330-346. [25] 李青, 王雅莉, 李海辰, 等. 基于洪峰模数的山洪灾害雨量预警指标研究[J]. 地球信息科学学报, 2017, 19(12): 1643-1652. Li Q, Wang Y L, Li H C, et al. Rainfall threshold for flash flood early warning based on flood peak modulus [J]. Journal of Geo-information Science, 19(12): 1643-1652. (in Chinese) [26] Khosravi K, Nohani E, Maroufinia E, et al. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique [J]. Natural Hazards, 2016, 83(2): 947-987. [27] 郭良, 丁留谦, 孙东亚, 等. 中国山洪灾害防御关键技术[J]. 水利学报, 2018, 49(9): 1123-1136. Guo L, Ding L Q, Sun D Y, et al. Key techniques of flash flood disaster prevention in China [J]. Journal of Hydraulic Engineering, 2018, 49(9): 1123-1136. (in Chinese) [28] Roy P, Chandra P S, Chakrabortty R, et al. Threats of climate and land use change on future flood susceptibility [J]. Journal of Cleaner Production, 2020, 272: 122757. [29] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. [30] Rousseeuw P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis [J]. Journal of Computational and Applied Mathematics, 1987, 20(1): 53-65. [31] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. [32] Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785-794. [33] Khosravi K, Shahabi H, Pham B T, et al. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods [J]. Journal of Hydrology, 2019, 573: 311-323. [34] 吴广建, 章剑林, 袁丁. 基于K-means的手肘法自动获取K值方法研究[J]. 软件, 2019, 40(5): 167-170. Wu G J, Zhang J L, Yuan D. Automatically obtaining K value based on K-means elbow method [J]. Computer Engineering & Software, 2019, 40(5): 167-170. (in Chinese) [35] Yao J, Zhang X X, Luo W C, et al. Applications of stacking/blending ensemble learning approaches for evaluating flash flood susceptibility [J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102932. [36] Xiong J N, Li J, Cheng W M, et al. A GIS-based support vector machine model for flash flood vulnerability assessment and mapping in China [J]. ISPRS International Journal of GeoInformation, 2019, 8(7): 297. |