[1] 孙大为,张广艳,郑纬民. 大数据流式计算:关键技术及系统实例[J]. 软件学报,2014, 25(4):839-862. Sun D W, Zhang G Y, Zheng W M. Big data stream computing:technologies and instances[J]. Journal of Software, 2014, 25(4):839-862. (in Chinese)
[2] 郭躬德, 李南, 陈黎飞. 一种基于混合模型的数据流概念漂移检测算法[J]. 计算机研究与发展, 2014, 51(4):731-742. Guo G D, Li N, Chen L F. Concept drift detection for data streams based on mixture model[J]. Journal of Computer Research and Development, 2014, 51(4):731-742. (in Chinese)
[3] Alippi C, Boracchi G, Roveri M. An effective just-in-time adaptive classifier for gradual concept drifts[C]//Proceedings of the 2011 International Joint Conference on Neural Networks, 2011:1675-1681.
[4] 刘三民,孙知信. 具有概念漂移的P2P流量识别研究[J]. 系统工程与电子技术,2013, 35(4):864-869. Liu S M, Sun Z X. Research of traffic identification in P2P network with concept drift[J]. Systems Engineering and Electronics, 2013, 35(4):864-869. (in Chinese)
[5] Street W N, Kim Y S. A streaming ensemble algorithm for large scale classification[C]//Proceeding of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001:377-382.
[6] 孙岳,毛国君,刘旭,刘椿. 基于多分类器的数据流中的概念漂移挖掘[J]. 自动化学报,2008, 34(1):93-96. Sun Y, Mao G J, Liu X, Liu C. Mining concept drifts from data streams based on multiclassifiers[J]. Acta Automatica Sinica, 2008, 34(1):93-96. (in Chinese)
[7] Flwell R, Polikar R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22(10):1517-1531.
[8] Ghazikhani A, Monsefi R, Yazdi H S. Ensemble of online neural networks for non-stationary and imbalanced data streams[J]. Neurocomputing, 2013, 6:1-10.
[9] Wang S, Minku L L, Yao X. Resampling-based ensemble methods for online class imbalance learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5):1356-1367.
[10] Farid D M, Li Z, Hossain A, Rahman C M, Strachan R, Sexton G, Dahal K. An adaptive ensemble classifier for mining concept drifting data streams[J]. Expert Systems with Applications, 2013, 40(15):5895-5906.
[11] Zhang P, Zhu X Q, Shi Y, Guo L, Wu X D. Robust ensemble learning for mining noisy data streams[J]. Decision Support Systems, 2011, 50:469-479.
[12] Li P P, Wu X D, Hu X G, Wang H. Learning concept-drifting data streams with random ensemble decision trees[J]. Neurocomputing, 2015, 166:68-83.
[13] Pan S R, Wu J, Zhu X Q, Zhang C Q. Graph ensemble boosting for imbalanced noisy graph stream classification[J]. IEEE Transaction on Cybernetics, 2015, 45(5):940-954.
[14] Sun Y, Tang K, Mink L L, Wang S, Yao X. Online ensemble learning of data streams with gradually evolved classes[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(6):1532-1545.
[15] Bifet A, Holmes G, Kirkby R, Pfahringer B. MOA:massive online analysis[J]. Journal of Machine Learning Research, 2010, 11(2):1601-1604. |