[1] 王维, 王晨阳. 实景三维中国建设布局与实现路径思考[J]. 测绘与空间地理信息, 2021, 44(7): 6-8, 14. Wang W, Wang C Y. Thoughts on real scene three-dimensional China construction layout and realization path [J]. Geomatics & Spatial Information Technology, 2021, 44(7): 6-8, 14. (in Chinese) [2] 王树臻, 郑国强, 王光生, 等. 多源点云数据融合的建筑物精细化建模[J]. 测绘通报, 2020(8): 28-32, 38. Wang S Z, Zheng G Q, Wang G S, et al. Building fine modeling based on multi-source point cloud data fusion [J]. Bulletin of Surveying and Mapping, 2020(8): 28-32, 38. (in Chinese) [3] 晏娅萍, 岳彩荣. 基于多源点云数据融合的单木树形重建[J]. 桂林理工大学学报, 2020, 40(3): 568-573. Yan Y P, Yue C R. Contour reconstruction of single tree based on multi-source point cloud data fusion [J]. Journal of Guilin University of Technology, 2020, 40(3): 568-573. (in Chinese) [4] 丁祥, 龚坚刚, 周文俊, 等. 基于多源数据融合的输电杆塔三维重建[J]. 自动化技术与应用, 2022, 41(7): 110-113. Ding X, Gong J G, Zhou W J, et al. Three-dimensional reconstruction of transmission tower based on multi-source data fusion [J]. Techniques of Automation and Applications, 2022, 41(7): 110-113. (in Chinese) [5] Garland M, Heckbert P S. Surface simplification using quadric error metrics [C]//Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997: 209-216. [6] 刘峻, 范豪, 孙宇, 等. 结合边折叠和局部优化的网格简化算法[J]. 计算机应用, 2016, 36(2): 535- 540. Liu J, Fan H, Sun Y, et al. Mesh simplification algorithm combined with edge collapse and local optimization [J]. Journal of Computer Applications, 2016, 36(2): 535-540. (in Chinese) [7] 张春森, 张会, 郭丙轩, 等. 城市场景结构感知的网格模型简化算法[J]. 测绘学报, 2020, 49(3): 334-342. Zhang C S, Zhang H, Guo B X, et al. Structure-aware simplified algorithm of mesh model for urban scene [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 334-342. (in Chinese) [8] 李鹏, 颜青松, 曲英杰, 等. 融合纹理信息的实景三维模型简化算法[J]. 测绘科学, 2021, 46(10): 151-158, 166. Li P, Yan Q S, Qu Y J, et al. Mesh simplified algorithm considering texture information[J]. Science of Surveying and Mapping, 2021, 46(10): 151-158, 166. (in Chinese) [9] Wei Y G, Wu L, Sun B, et al. Improved QEM simplification algorithm based on discrete curvature and a sparseness coefficient [C]//2014 International Conference on IT Convergence and Security (ICITCS), 2014: 1-5. [10] Trettner P, Kobbelt L. Fast and robust QEF minimization using probabilistic quadrics [J]. Computer Graphics Forum, 2020, 39(2): 325-334. [11] Gao X F, Wu K, Pan Z R. Low-poly mesh generation for building models [C]//Special Interest Group on Computer Graphics and Interactive Techniques Conference, 2022: 1-9. [12] Schönberger J L, Zheng E, Frahm J M, et al. Pixelwise view selection for unstructured multi-view stereo [C]//14th European Conference on Computer Vision (ECCV), 2016: 501-518. [13] Zheng E L, Dunn E, Jojic V, et al. PatchMatch based joint view selection and depthmap estimation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1510-1517. [14] 康志忠, 王薇薇, 李珍. 多源数据融合的三维点云特征面分割和拟合一体化方法[J]. 武汉大学学报(信息科学版), 2013, 38(11): 1317-1321, 1382. Kang Z Z, Wang W W, Li Z. An integrative method of 3D point clouds feature segmentation and fitting fusing multiple data sources [J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1317-1321, 1382. (in Chinese) [15] Lin Y B, Wang C, Zhai D W, et al. Toward better boundary preserved supervoxel segmentation for 3D point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 39-47. [16] 赖亦斌, 陆声链, 钱婷婷, 等. 植物三维点云分割[J]. 应用科学学报, 2021, 39(4): 660-671. Lai Y B, Lu S L, Qian T T, et al. Three-dimensional point cloud segmentation for plants [J]. Journal of Applied Sciences, 2021, 39(4): 660-671. (in Chinese) [17] Besl P J, Jain R C. Segmentation through variable-order surface fitting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(2): 167-192. [18] 李文, 刘德儿, 王有毅, 等. 基于超体素的区域聚类的复杂场景分割[J]. 激光与红外, 2021, 51(11): 1425-1432. Li W, Liu D E, Wang Y Y, et al. Complex scene segmentation based on supervoxel region clustering [J]. Laser & Infrared, 2021, 51(11): 1425-1432. (in Chinese) [19] 韩英, 郑文武, 赵莎, 等. 一种改进的超体素与区域生长点云分割方法[J]. 测绘通报, 2022(12): 126-130. Han Y, Zheng W W, Zhao S, et al. An improved method for segmentation of supervoxel and regional growing point clouds [J]. Bulletin of Surveying and Mapping, 2022(12): 126-130. (in Chinese) [20] 段黎明, 邵辉, 李中明, 等. 高效率的三角网格模型保特征简化方法[J]. 光学精密工程, 2017, 25(2): 460-468. Duan L M, Shao H, Li Z M, et al. Simplification method for feature preserving of efficient triangular mesh model [J]. Optics and Precision Engineering, 2017, 25(2): 460-468. (in Chinese) [21] 兰峰, 张帆, 高云龙, 等. 顾及地物类别的倾斜摄影三维模型简化方法[J]. 测绘通报, 2022(4): 44-50. Lan F, Zhang F, Gao Y L, et al. A simplification method for 3D model of oblique photography considering geographic categories [J]. Bulletin of Surveying and Mapping, 2022(4): 44-50. (in Chinese) [22] 张春森, 张萌萌, 郭丙轩. 影像信息驱动的三角网格模型优化方法[J]. 测绘学报, 2018, 47(7): 959-967. Zhang C S, Zhang M M, Guo B X. Refinement of the 3D mesh model driven by the image information [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 959-967. (in Chinese) [23] 杨煜, 冼楚华, 李桂清. 结合局部区域特征的自适应简化率网格简化算法[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 857-864. Yang Y, Xian C H, Li G Q. Mesh simplification with adaptive simplified ratio based on local region features [J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(6): 857-864. (in Chinese) [24] Silva S, Madeira J, Santos B S. PolyMeCo-an integrated environment for polygonal mesh analysis and comparison [J]. Computers & Graphics, 2009, 33(2): 181-191. [25] 李大军, 苟国华, 吴天辰, 等. 结构信息约束的三角网格模型简化方法[J]. 测绘科学, 2021, 46(8): 88-95, 164. Li D J, Gou G H, Wu T C, et al. Surface simplification method with structural information constraint [J]. Science of Surveying and Mapping, 2021, 46(8): 88-95, 164. (in Chinese) |