[1] Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing [J]. Progress in Aerospace Sciences, 2014, 68: 1-26. [2] 王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J]. 航空学报, 2021, 42(1): 47-61. Wang M M, Luo J J, Yuan J P, et al. In-orbit assembly technology: review [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 47-61. (in Chinese) [3] 雷荣华, 付晓东, 陈力. 柔性空间机器人快速终端滑模容错抑振控制[J]. 中国惯性技术学报, 2023, 31(9): 940-948. Lei R H, Fu X D, Chen L. Fast terminal sliding mode fault-tolerant vibration-suppression control for the flexible space robot [J]. Journal of Chinese Inertial Technology, 2023, 31(9): 940-948. (in Chinese) [4] 朱敏, 陈山. 空间机器人末端抗干扰优化控制方法[J]. 机械设计与制造, 2022(11): 243-247. Zhu M, Chen S. Anti interference optimal control method for space robot terminal [J]. Machinery Design & Manufacture, 2022(11): 243-247. (in Chinese) [5] Meng D, Wang X, Xu W, et al. Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression [J]. Journal of Sound and Vibration, 2017, 396: 30-50. [6] 洪梦情, 丁萌, 顾秀涛, 等. 双臂空间机器人的固定时间轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1168-1174. Hong M Q, Ding M, Gu X T, et al. Fixed time trajectory tracking control for dual-arm space robot [J]. Journal of Zhejiang University (Engineering Science), 2022, 56(6): 1168-1174. (in Chinese) [7] 沈金淼, 游张平, 张文辉, 等. 基于自适应神经网络的柔性关节空间机器人振动抑制控制[J]. 上海航天, 2022, 39(6): 29-36, 50. Shen J M, You Z P, Zhang W H, et al. Vibration suppression control of space robot with flexible joints based on adaptive neural network [J]. Aerospace Shanghai, 2022, 39(6): 29-36, 50. (in Chinese) [8] Seddaoui A, Saaj C M. Combined nonlinear H1 controller for a controlled-floating space robot [J]. Journal of Guidance, Control, and Dynamics, 2019, 42(8): 1878-1885. [9] Yan L, Xu W F, Hu Z, et al. Multi-objective configuration optimization for coordinated capture of dual-arm space robot [J]. Acta Astronautica, 2020, 167: 189-200. [10] Shi L, Jayakody H, Katupitiya J, et al. Coordinated control of a dual-arm space robot: novel models and simulations for robotic control methods [J]. IEEE Robotics and Automation Magazine, 2018, 25(4): 86-95. [11] 薛智慧, 刘金国. 空间机械臂操控技术研究综述[J]. 机器人, 2022, 44(1): 107-128. Xue Z H, Liu J G. Review of space manipulator control technologies [J]. Robot, 2022, 44(1): 107-128. (in Chinese) [12] Sánchez-Torres J D, Defoort M, Munoz-Vázquez A J. A second order sliding mode controller with predefined-time convergence [C]//15th International Conference on Electrical Engineering, Computing Science and Automatic Control. IEEE, 2018: 1-4. [13] 赛华阳, 徐振邦, 贺帅, 等. 刚性航天器的预定义时间滑模控制[J]. 光学精密工程, 2021, 29(12): 2891-2901. Sai H Y, Xu B Z, He S, et al. Predefined-time sliding mode control for rigid spacecraft [J]. Optics and Precision Engineering, 2021, 29(12): 2891-2901. [14] 丁萌, 顾秀涛, 郑先杰, 等. 基于模糊补偿的连续型空间机械臂预定时间控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1175-1180. Ding M, Gu X T, Zheng X J, et al. Predefined-time control of continuum space manipulator based on fuzzy compensation [J]. Journal of Zhejiang University (Engineering Science), 2022, 56(6): 1175-1180. (in Chinese) [15] Wang F, Miao Y, Li C Y, et al. Attitude control of rigid spacecraft with predefined-time stability [J]. Journal of the Franklin Institute, 2020, 357(7): 4212-4221. [16] Sánchez-Torres J D, Sanchez E N, Loukianov A G. A discontinuous recurrent neural network with predefined time convergence for solution of linear programming [C]//2014 IEEE Symposium on Swarm Intelligence. IEEE, 2014: 1-5. [17] 谢立敏, 于潇雁. 输入受限的漂浮基多柔性空间机器人轨迹跟踪的混合控制及振动主动抑制[J]. 空间科学学报, 2023, 43(2): 369-380. Xie L M, Yu X Y. Trajectory tracking hybrid control and vibration suppression of free-floating multi-flexible space robot with limited input [J]. Chinese Journal of Space Science, 2023, 43(2): 369-380. (in Chinese) [18] 黄登峰. 刚柔混合漂浮基空间机器人系统的智能神经网络控制[D]. 福州: 福州大学, 2011. |