应用科学学报 ›› 2025, Vol. 43 ›› Issue (6): 948-961.doi: 10.3969/j.issn.0255-8297.2025.06.005

• 信号与信息处理 • 上一篇    

一种基于边缘特征引导的低照度图像细节增强方法

江泽涛, 杨建琛, 李孟桐, 程留明, 张路豪   

  1. 桂林电子科技大学 广西图像图形与智能处理重点实验室, 广西 桂林 541004
  • 收稿日期:2025-01-02 发布日期:2025-12-19
  • 通信作者: 江泽涛,教授,研究方向为图像处理。E-mail:zetaojiang@guet.edu.cn E-mail:zetaojiang@guet.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 62473105, No. 62172118);广西自然学科基金重点项目(No. 2021GXNSFDA196002);广西图像图形智能处理重点实验项目(No. GIIP2302, No. GIIP2303, No. GIIP2304);研究生创新基金项目(No. 2024YCXB09,No. 2024YCXS039)

Low-Light Image Detail Enhancement Method Based on Edge Feature Guidance

JIANG Zetao, YANG Jianchen, LI Mengtong, CHENG Liuming, ZHANG Luhao   

  1. Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Received:2025-01-02 Published:2025-12-19

摘要: 目前低照度图像增强方法主要采用单一特征重构目标图像,其中堆叠上采样-下采样操作在实现特征缩放时不可避免地造成高频信息的不可逆损失,最终导致增强后的图像存在细节信息模糊的问题。针对这一问题,本文提出一种基于边缘特征引导的低照度图像细节增强方法,该方法包含边缘特征提取模块、增强模块及边缘特征引导模块3个部分,采用Transformer由粗到细并借助边缘特征引导,渐进式地生成高质量的增强图像。首先,边缘特征提取模块通过使用并行窗口的Transformer模块(parallel window transformer block,PWTB)从低照度图像中获取边缘特征,引导图像的增强过程;然后,在增强模块中使用由粗到细的Transformer模块(coarse-to-fine transformer block,CFTB),该模块包括通道Transformer模块(channel transformer block,CTB)和PWTB,分别对全局粗粒度特征与局部细粒度特征进行提取,并对Transformer中前馈网络进行了修改;最后,由边缘特征引导模块将边缘特征嵌入到图像特征空间中,缓解了黑暗区域严重丢失细节的问题。实验结果表明,本文所提出的方法在LOL-v1,LOL-v2-real和LOLv2-synthetic数据集上,峰值信噪比分别达到24.97 dB,23.20 dB和25.92 dB,结构相似性指数分别达到0.873,0.865和0.941,均高于目前的主流方法;在主观质量方面,生成的图像较好地保持了图像细节信息。

关键词: 低照度图像细节增强, 边缘特征引导, 并行窗口的Transformer模块, 由粗到细的Transformer

Abstract: Currently, the low-light image enhancement methods mainly adopt a single feature to reconstruct the target image. Among these methods, stacked upsampling-downsampling operations inevitably cause irreversible loss of high-frequency information when performing feature scaling, ultimately resulting in blurred detailed information in the enhanced image. To address this issue, this paper proposed a low-light image detail enhancement method based on edge feature guidance. The method consisted of three components: an edge feature extract module (EFEM), an enhancement module, and an edge-aware feature guidance module (EFGM). By leveraging Transformer and guided by edge features, it progressively generated high-quality enhanced images in a coarse-to-fine manner. First, the EFEM acquired edge features from low-light images via a parallel window transformer block (PWTB), which guided the image enhancement process. Second, the enhancement module employed a coarse-to-fine transformer block (CFTB), which included a channel transformer block (CTB) and a PWTB. These two components extracted global coarse-grained features and local fine-grained features respectively, and modifications were made to the feed-forward network (FFN) in the Transformer. Finally, the EFGM embedded edge features into the image feature space, mitigating the severe loss of details in dark regions. The experimental results show that the proposed method achieves peak signal-to-noise ratio (PSNR) of 24.97 dB, 23.20 dB, and 25.92 dB, and structural similarity index measure (SSIM) of 0.873, 0.865, and 0.941 on the LOL-v1, LOL-v2-real, and LOLv2-synthetic datasets, respectively. All these metrics outperform those of the current mainstream methods. In terms of subjective quality, the enhanced images well preserve the image detail information.

Key words: low-light image details enhancement, edge feature guidance, parallel window transformer block, coarse-to-fine transformer

中图分类号: