应用科学学报 ›› 2025, Vol. 43 ›› Issue (2): 245-256.doi: 10.3969/j.issn.0255-8297.2025.02.005

• 通信工程 • 上一篇    

基于暗区域引导的低照度图像增强

汪婉灵, 熊邦书, 欧巧凤, 余磊, 饶智博   

  1. 南昌航空大学 图像处理与模式识别江西省重点实验室, 江西 南昌 330063
  • 收稿日期:2024-01-28 发布日期:2025-04-03
  • 通信作者: 熊邦书,教授,研究方向为模式识别、智能信号处理和视觉测量。E-mail:xiongbs@126.com
  • 基金资助:
    国家自然科学基金(No.62365014);江西省重点研发计划项目(No.20212BBE53017)资助

Low-Light Image Enhancement Based on Dark Region Guidance

WANG Wanling, XIONG Bangshu, OU Qiaofeng, YU Lei, RAO Zhibo   

  1. Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China
  • Received:2024-01-28 Published:2025-04-03

摘要: 针对现有增强方法在图像照度分布不均匀时出现的局部过度增强、颜色失真以及细节丢失问题,提出了一种结合暗区域引导与注意力机制的低照度图像增强方法。首先,采用简单线性迭代聚类方法生成暗区域引导图,指导网络在保障正常曝光区域不过度增强的情况下,重点增强图像曝光不足区域;其次,设计通道注意力模块,提高网络对颜色信息的提取能力,更好地恢复图像颜色,保证颜色自然度;再次,设计全局上下文模块,增加网络全局感知能力,丰富图像细节信息;最后,增强网络融合输入特征和暗区域注意力网络输出特征,实现图像对比度再增强。在6个公共数据集上进行多组对比实验,分别从主观与客观两方面进行性能对比,结果表明所提方法能够有效解决低照度图像存在的颜色失真、细节丢失和曝光不均匀问题,具有较好的视觉增强效果与泛化性。

关键词: 低照度图像增强, 暗区域引导, 通道注意力模块, 全局上下文模块, 深度学习

Abstract: To address the issues of overexposure, color distortion and detail loss in existing enhancement methods when image illumination distribution is uneven, a low-light image enhancement method combining dark region guidance and attention mechanism is proposed. Firstly, the simple linear iterative clustering (SLIC) method is used to generate a dark region guidance map, which guides the network to enhance the underexposed regions of the image while ensuring that the normally exposed regions are not overexposed. Secondly, a channel attention module is designed to improve the extraction of color information, effectively restoring the image color while maintaining natural color fidelity. Subsequently, a global context module is established to enhance the network’s global perception capability, enriching image details. Finally, an enhancement network is designed to fuse the input features with the output features of the dark area attention network,achieving contrast re-enhancement. Multiple comparative experiments are conducted on six public datasets to compare the performance from both subjective and objective aspects. It is shown that the proposed method effectively solves the problems of color distortion, detail loss and uneven exposure in low-light images, delivering superior visual enhancement effect and generalizability.

Key words: low-light image enhancement, dark region guidance, channel attention module, global context module, deep learning

中图分类号: