应用科学学报 ›› 2025, Vol. 43 ›› Issue (1): 169-182.doi: 10.3969/j.issn.0255-8297.2025.01.012

• 计算机应用专辑 • 上一篇    下一篇

脉冲神经网络基准测试及类脑训练框架性能评估

胡汪鑫1,2, 成英超1, 何玉林1, 黄哲学1,2, 蔡占川3   

  1. 1. 人工智能与数字经济广东省实验室(深圳), 广东 深圳 518107;
    2. 深圳大学 计算机与软件学院, 广东 深圳 518060;
    3. 澳门科技大学 计算机科学与工程学院, 澳门 999078
  • 收稿日期:2024-08-08 出版日期:2025-01-30 发布日期:2025-01-24
  • 通信作者: 成英超,副研究员,研究方向为人工智能、机器学习与数据挖掘、新型算力网络智能计算。E-mail:chengyingchao@gml.ac.cn E-mail:chengyingchao@gml.ac.cn
  • 基金资助:
    广东省基础与应用基础研究基金重点项目(No.2023B1515120020);广东省自然科学基金面上项目(No.2023A1515011667);深圳市基础研究项目(No.JCYJ20220818100205012,No.JCYJ20210324093609026)资助

Benchmarking of Spiking Neural Networks and Performance Evaluation of Neuromorphic Training Frameworks

HU Wangxin1,2, CHENG Yingchao1, HE Yulin1, HUANG Zhexue1,2, CAI Zhanchuan3   

  1. 1. Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen 518107, Guangdong, China;
    2. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China;
    3. School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China
  • Received:2024-08-08 Online:2025-01-30 Published:2025-01-24

摘要: 随着脉冲神经网络(spiking neural network,SNN)研究需求的不断增长,开源类脑训练框架也迅速发展。然而,目前缺乏针对这些框架的系统性选择指南。为了解决该问题,提出了一种基于图像分类任务的SNN基准测试方法。本文为两种SNN训练方法,即直接替代梯度反向传播训练方法以及从人工神经网络(artificial neural network,ANN)到SNN的转换训练方法分别设计了卷积神经网络和全连接深度神经网络模型,并使用MNIST、Fashion-MNIST和CIFAR-10基准图像数据集,以训练时间和分类准确率为评估指标,比较了不同类脑训练框架的性能差异。研究结果表明,在SNN直接训练中,类脑训练框架SpikingJelly在训练时间和分类准确率方面均表现优异;而在ANN到SNN的转换训练中,Lava框架实现了最高的分类准确率。

关键词: 深度学习, 脉冲神经网络, 类脑训练框架, 基准测试, 图像分类

Abstract: With the growing interest in spiking neural networks (SNNs), the development of open-source neuromorphic training frameworks has also accelerated. However, there is currently a lack of systematic guidelines for selecting these frameworks. To address this issue, this paper proposes a benchmarking method for SNNs based on image classification tasks. This method designs a convolutional neural network and a fully connected deep neural networks to evaluate two SNN training approaches: direct training with surrogate gradient backpropagation and conversion from artificial neural networks (ANNs) to SNNs. Based on the MNIST, Fashion-MNIST, and CIFAR-10 benchmark image datasets, the performance comparisons of various neuromorphic training frameworks are conducted using evaluation metrics such as training time and classification accuracy. Experimental results indicate that the neuromorphic training framework SpikingJelly outperforms others in terms of both training time and classification accuracy in direct SNN training, while the Lava framework achieves the highest classification accuracy in ANN-to-SNN conversion training.

Key words: deep learning, spiking neural network, neuromorphic training framework, benchmarking, image classification

中图分类号: