[1] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1-3. Zheng N N. The new era of artificial intelligence [J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 1-3. (in Chinese) [2] 黄铁军, 余肇飞, 刘怡俊. 类脑机的思想与体系结构综述[J]. 计算机研究与发展, 2019, 56(6): 1135-1148. Huang T J, Yu Z F, Liu Y J. Brain-like machine: thought and architecture [J]. Journal of Computer Research and Development, 2019, 56(6): 1135-1148. (in Chinese) [3] 张铁林, 徐波. 脉冲神经网络研究现状及展望[J]. 计算机学报, 2021, 44(9): 1767-1785. Zhang T L, Xu B. Research advances and perspectives on spiking neural networks [J]. Chinese Journal of Computers, 2021, 44(9): 1767-1785. (in Chinese) [4] Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing [J]. Nature, 2019, 575(7784): 607-617. [5] Rathi N, Chakraborty I, Kosta A, et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware [J]. ACM Computing Surveys, 2023, 55(12): 1-49. [6] Yang S M, Chen B D. Effective surrogate gradient learning with high-order information bottleneck for spike-based machine intelligence [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 1-15. [7] Mostafa H. Supervised learning based on temporal coding in spiking neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 3227-3235. [8] Bu T, Ding J, Yu Z, et al. Optimized potential initialization for low-latency spiking neural networks [C]//36th AAAI Conference on Artificial Intelligence, 2022: 11-20. [9] Hao Z, Bu T, Ding J, et al. Reducing ANN-SNN conversion error through residual membrane potential [J]//37th AAAI Conference on Artificial Intelligence, 2023: 11-21. [10] Baltes M, Abuhajar N, Yue Y, et al. Joint ANN-SNN co-training for object localization and image segmentation [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5. [11] Bu T, Fang W, Ding J, et al. Optimal ANN-SNN conversion for high-accuracy and ultra-lowlatency spiking neural networks [DB/OL]. 2023[2024-08-08]. https://arxiv.org/abs/2303.04347. [12] Hu Y F, Tang H J, Pan G. Spiking deep residual networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 5200-5205. [13] Zenke F, Ganguli S. SuperSpike: supervised learning in multilayer spiking neural networks [J]. Neural Computation, 2018, 30(6): 1514-1541. [14] Javanshir A, Nguyen T, Mahmud M, et al. Advancements in algorithms and neuromorphic hardware for spiking neural networks [J]. Neural Computation, 2022, 34(6): 1289-1328. [15] Wang Y, Shi K, Lu C, et al. Spatial-temporal self-attention for asynchronous spiking neural networks [C]//32nd International Joint Conference on Artificial Intelligence, 2023: 3085-3093. [16] 张铁林, 李澄宇, 王刚, 等. 适合类脑脉冲神经网络的应用任务范式分析与展望[J]. 电子与信息学报, 2023, 45(8): 2675-2688. Zhang T L, Li C Y, Wang G, et al. Research advances and new paradigms for biologyinspired spiking neural networks [J]. Journal of Electronics & Information Technology, 2023, 45(8): 2675-2688. (in Chinese) [17] Fang W, Chen Y, Ding J, et al. SpikingJelly: an open-source machine learning infrastructure platform for spike-based intelligence [J]. Science Advances, 2023, 9(40): eadi1480. [18] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [19] Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms [DB/OL]. 2017[2024-08-08]. https://arxiv.org/abs/1708.07747. [20] Krizhevsky A. Learning multiple layers of features from tiny images [R]. Toronto: University of Toronto, 2009. [21] 姜晓勇, 李忠义, 黄朗月, 等. 神经网络剪枝技术研究综述[J]. 应用科学学报, 2022, 40(5): 838-849. Jiang X Y, Li Z Y, Huang L Y, et al. Review of neural network pruning techniques [J]. Journal of Applied Sciences, 2022, 40(5): 838-849. (in Chinese) [22] Lyu C Z, Xu J H, Zheng X Q. Spiking convolutional neural networks for text classification [C]//11th International Conference on Learning Representations, 2023: 1-17. [23] Miikkulainen R, Liang J, Meyerson E, et al. Evolving deep neural networks [DB/OL]. 2017[2024-08-08]. https://arxiv.org/abs/1703.00548. [24] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [25] Kinouchi O, Pazzini R, Copelli M. Mechanisms of self-organized quasicriticality in neuronal network models [J]. Frontiers in Physics, 2020, 8: 583213. [26] Szeliski R. Computer vision: algorithms and applications [M]. New York: Springer-Verlag, 2010: 1-28. [27] Viet N H C. Spike-based hybrid learning method for image recognition task [C]//Proceedings of the 20249th International Conference on Intelligent Information Technology, 2024: 124-133. [28] 岳斌. 基于脉冲神经网络的手写数字识别系统的设计与实现[D]. 北京: 中国科学院大学, 2022. |