应用科学学报 ›› 2025, Vol. 43 ›› Issue (1): 137-153.doi: 10.3969/j.issn.0255-8297.2025.01.010
王莹笑, 杨彦红, 谭云峰
收稿日期:
2024-07-17
出版日期:
2025-01-30
发布日期:
2025-01-24
通信作者:
杨彦红,副教授,研究方向为视频内容理解、移动计算、软件应用。E-mail:yangyanhong@bigc.edu.cn
E-mail:yangyanhong@bigc.edu.cn
基金资助:
WANG Yingxiao, YANG Yanhong, TAN Yunfeng
Received:
2024-07-17
Online:
2025-01-30
Published:
2025-01-24
摘要: 本文梳理了近五年视频人脸识别领域的研究成果,对比分析了采用的面向视频的人脸特征计算方法,主要分为传统人脸特征计算方法、深度学习人脸特征计算方法、特征聚合和特征融合方法。传统特征提取方法包括线性的和非线性的,深度学习特征提取方法包括非时空特征提取方法和时空特征提取方法。特征聚合和特征融合方法能够整合多个特征源以及融合不同时间段的特征,提高识别性能。此外,本文还统一分析了相关文献用到的算法、算法的优势、评价指标以及应用,能为实际应用中的视频人脸识别系统提供更可靠和高效的解决方案。
中图分类号:
王莹笑, 杨彦红, 谭云峰. 面向视频的人脸特征计算方法[J]. 应用科学学报, 2025, 43(1): 137-153.
WANG Yingxiao, YANG Yanhong, TAN Yunfeng. Video-Based Facial Feature Computation Methods[J]. Journal of Applied Sciences, 2025, 43(1): 137-153.
[1] Omarov B, Omarov B, Shekerbekova S, et al. Applying face recognition in video surveillance security systems [C]//International Conference on Software Technology: Methods and Tools, 2019: 271-280. [2] Suma V. Computer vision for human-machine interaction-review [J]. Journal of Trends in Computer Science and Smart technology, 2019(2): 131-139. [3] Dharrao D S, Uke N J. Fractional krill-lion algorithm based actor critic neural network for face recognition in real time surveillance videos [J]. International Journal of Computational Intelligence and Applications, 2019, 18(2): 1950011. [4] 朱国华, 徐昆. HOG的一种改进算法在人脸检测上的应用[J]. 计算机仿真, 2021, 38(9): 185-189. Zhu G H, Xu K. An improved HOG algorithm for face detection application [J]. Computer Simulation, 2021, 38(9): 185-189. (in Chinese) [5] Akbay Y O, Mitrea M. Face detection and recognition in organic video: a comparative study for sport celebrities database [J]. Electronic Imaging, 2022, 34(10): 355-1-355-6. [6] Li Q, Guo N, Ye X, et al. Video face recognition system: retinaface-mnet-faster and secondary search [C]//Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC), 2021: 625-636. [7] Abed R, Bahroun S, Zagrouba E. KeyFrame extraction based on face quality measurement and convolutional neural network for efficient face recognition in videos [J]. Multimedia Tools and Applications, 2021, 80(15): 23157-23179. [8] 崔希, 刘首明. 基于朴素贝叶斯算法的智能电厂监控夜间视频人脸识别方法[J]. 电子测试, 2021(24): 44-46. Cui X, Liu S M. Face recognition method of intelligent power plant monitoring night video based on Naive Bayes algorithm [J]. Electronic Test, 2021(24): 44-46. (in Chinese) [9] 吕婧淑, 操晓春, 杨培. 基于区块链和人脸识别的双因子身份认证模型[J]. 应用科学学报, 2019, 37(2): 164-178. Lyu J S, Cao X C, Yang P. Two-factor identity authentication model based on blockchain and face recognition [J]. Journal of Applied Sciences, 2019, 37(2): 164-178. (in Chinese) [10] Tsai T H, Tsai C E, Chi P T. A one-shot face detection and recognition using deep learning method for access control system [J]. Signal, Image and Video Processing, 2023, 17(4): 1571- 1579. [11] Yoganand A V, Kavida A C, Rukmanidevi D. An efficient PCA based pose and occlusion invariant face recognition system for video surveillance [J]. Cluster Computing, 2019, 22(5): 11443-11456. [12] Li C, Wen C L, Qiu Y T. A video sequence face expression recognition method based on squeeze-and-excitation and 3DPCA network [J]. Sensors, 2023, 23(2): 823. [13] Greche L, Akil M, Kachouri R, et al. A new pipeline for the recognition of universal expressions of multiple faces in a video sequence [J]. Journal of Real-Time Image Processing, 2020, 17(5): 1389-1402. [14] Karpagam M, Jeyavathana R B, Chinnappan S K, et al. A novel face recognition model for fighting against human trafficking in surveillance videos and rescuing victims [J]. Soft Computing, 2023, 27(18): 13165-13180. [15] Wang H, Zhang D S, Miao Z H. Face recognition with single sample per person using HOGLDB and SVDL [J]. Signal, Image and Video Processing, 2019, 13(5): 985-992. [16] Lucey P, Cohn J F, Kanade T, et al. The extended Cohn-Kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 94-101. [17] Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Surveys (CSUR), 2003, 35(4): 399-458. [18] 郑秋文, 刘惠义. 结合深度Q学习和注意模型的视频人脸识别[J]. 信息技术, 2019, 43(4): 111-115, 120. Zheng Q W, Liu H Y. Video face recognition combined with depth Q learning and attention model [J]. Information Technology, 2019, 43(4): 111-115, 120. (in Chinese) [19] Moustafa A A, Elnakib A, Areed N F F. Age-invariant face recognition based on deep features analysis [J]. Signal, Image and Video Processing, 2020, 14(5): 1027-1034. [20] Shan X X, Lu Y, Li Q L, et al. Model-based transfer learning and sparse coding for partial face recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4347-4356. [21] 何晓云, 许江淳, 史鹏坤, 等. 基于注意力机制的视频人脸表情识别[J]. 信息技术, 2020, 44(2): 103-107. He X Y, Xu J C, Shi P K, et al. Video facial expression recognition method based on attention mechanism [J]. Information Technology, 2020, 44(2): 103-107.(in Chinese) [22] Hariri W. Efficient masked face recognition method during the COVID-19 pandemic [J]. Signal, Image and Video Processing, 2022, 16(3): 605-612. [23] 晏鹏程, 张一鸣, 童光红, 等. 基于卷积神经网络的视频监控人脸识别方法[J]. 成都工业学院学报, 2020, 23(1): 26-31. Yan P C, Zhang Y M, Tong G H, et al. Face recognition method in video surveillance based on convolutional neural network [J]. Journal of Chengdu Technological University, 2020, 23(1): 26-31. (in Chinese) [24] Huo J H, Van Zyl T L. Unique faces recognition in videos [C]//2020 IEEE 23rd International Conference on Information Fusion (FUSION), 2020: 1-7. [25] Wolf L, Hassner T, Maoz I. Face recognition in unconstrained videos with matched background similarity [C]//Computer Vision & Pattern Recognit (CVPR), 2011: 529-534. [26] Ricanek K, Tesafaye T. MORPH: a longitudinal image database of normal adult ageprogression [C]//7th International Conference on Automatic Face and Gesture Recognition (FGR06), 2006: 341-345. [27] Lanitis A, Taylor C J, Cootes T F. Toward automatic simulation of aging effects on face images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 442- 455. [28] Huang G B, Mattar M A, Berg T L, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments [J]. Month, 2008: 1-15. [29] Martinez A M, Kak A C. PCA versus LDA [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233. [30] Dhall A, Goecke R, Lucey S, et al. Collecting large, richly annotated facial-expression databases from movies [J]. IEEE Multimedia, 2012, 19(3): 34-41. [31] Wang Z Y, Huang B J, Wang G C, et al. Masked face recognition dataset and application [J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5(2): 298-304. [32] Liu Z X, Hu H, Bai J Q, et al. Feature aggregation network for video face recognition [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 990-998. [33] Peng B Y, Jin X, Wu Y C, et al. Geometry guided feature aggregation in video face recognition [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 2670-2677. [34] Protsenko I, Lehinevych T, Voitekh D, et al. Self-attention aggregation network for video face representation and recognition [DB/OL]. 2020[2024-07-17]. http://arxiv.org/abs/2010.05340v1. [35] Gong S X, Shi Y C, Jain A K. Low quality video face recognition: multi-mode aggregation recurrent network (MARN) [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 1027-1035. [36] Gong S X, Shi Y C, Jain A K. Recurrent embedding aggregation network for video face recognition [DB/OL]. 2019[2024-07-17]. http://arxiv.org/abs/1904.12019v2. [37] Gong S X, Shi Y C, Kalka N D, et al. Video face recognition: component-wise feature aggregation network (C-FAN) [C]//2019 International Conference on Biometrics (ICB), 2019: 1-8. [38] Zhao H, Shi Y J, Tong X, et al. G-FAN: graph-based feature aggregation network for video face recognition [C]//2020 25th International Conference on Pattern Recognition (ICPR), 2021: 1672-1678. [39] Zhang L Y, Wang H B, Wang H T. A feature map aggregation network for unconstrained video face recognition [J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(2): 2413-2425. [40] Hörmann S, Cao Z X, Knoche M, et al. Face aggregation network for video face recognition [C]//2021 IEEE International Conference on Image Processing (ICIP), 2021: 2973-2977. [41] Wei J, Ying C. Aggregative adversarial network for still-to-video face recognition [C]//20205th International Conference on Computer and Communication Systems (ICCCS), 2020: 266-270. [42] Ou Z H, Hu Y C, Song M N, et al. Redundancy removing aggregation network with distance calibration for video face recognition [J]. IEEE Internet of Things Journal, 2021, 8(9): 7279-7287. [43] Rivero-Hernandez J, Morales-Gonzalez A, Denis L G, et al. Ordered weighted aggregation networks for video face recognition [J]. Pattern Recognition Letters, 2021, 146: 237-243. [44] Li Q, Wan Q, Lee S H, et al. Video face recognition with audio-visual aggregation network [C]//28th International Conference on Neural Information Processing (ICONIP), 2021: 150-161. [45] 刘宇琦, 赵宏伟, 王玉. 一种基于QPSO优化的流形学习的视频人脸识别算法[J]. 自动化学报, 2020, 46(2): 256-263. Liu Y Q, Zhao H W, Wang Y. Video face recognition method based on QPSO and manifold learning [J]. Acta Automatica Sinica, 2020, 46(2): 256-263. (in Chinese) [46] Alqaralleh E, Afaneh A, Toygar Ö. Masked face recognition using frontal and profile faces with multiple fusion levels [J]. Signal, Image and Video Processing, 2023, 17(4): 1375-1382. [47] Rodríguez A M, Geradts Z, Worring M, et al. Improved likelihood ratios for surveillance video face recognition with multimodal feature pairing [C]//202311th International Workshop on Biometrics and Forensics (IWBF), 2023: 3503-3607. [48] Klare B F, Klein B, Taborsky E, et al. Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1931-1939. [49] Maze B, Adams J, Duncan J A, et al. IARPA Janus benchmark - C: face dataset and protocol [C]//2018 International Conference on Biometrics (ICB), 2018: 158-165. [50] Kalka N D, Maze B, Duncan J A, et al. IJB-S: IARPA Janus surveillance video benchmark [C]//2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2018: 529-537. [51] Beveridge J R, Phillips P J, Bolme D S, et al. The challenge of face recognition from digital point-and-shoot cameras [C]//2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2013: 1-8. [52] Huang Z W, Shan S G, Wang R P, et al. A benchmark and comparative study of videobased face recognition on COX face database [J]. IEEE Transactions on Image Processing, 2015, 24(12): 5967-5981. |
[1] | 胡汪鑫, 成英超, 何玉林, 黄哲学, 蔡占川. 脉冲神经网络基准测试及类脑训练框架性能评估[J]. 应用科学学报, 2025, 43(1): 169-182. |
[2] | 刘珈宁, 张思佳, 张正龙, 王祎涵, 安宗诗. 基于多跳机制的扩散图谱推荐模型[J]. 应用科学学报, 2025, 43(1): 123-136. |
[3] | 贾志洋, 许兆, 冷艳梅, 闻新, 龚浩宇. 基于并行优化CBAM的轻量级故障诊断模型[J]. 应用科学学报, 2025, 43(1): 94-109. |
[4] | 段新涛, 白鹿伟, 徐凯欧, 张萌, 保梦茹, 武银行, 秦川. 基于卷积神经网络的轻量高效图像隐写[J]. 应用科学学报, 2025, 43(1): 80-93. |
[5] | 王冰轮, 方巍. 基于U-Net改进的日平均2 m气温订正方法[J]. 应用科学学报, 2025, 43(1): 51-65. |
[6] | 唐意恒, 王永雄, 王哲, 张晓理. 基于子领域适应和时空学习的脑电情感识别[J]. 应用科学学报, 2024, 42(6): 1016-1026. |
[7] | 贺加贝, 周菊香, 甘健侯, 吴迪, 温晓宇. 基于多任务学习的课堂表情分类模型[J]. 应用科学学报, 2024, 42(6): 947-961. |
[8] | 金彦亮, 范宝荣, 高塬, 汪小勇, 顾晨杰. 基于元学习和强化学习的自动驾驶算法[J]. 应用科学学报, 2024, 42(5): 795-809. |
[9] | 栗莎, 王永雄, 王哲, 陈旭, 何嘉欣. 融合局部和全局特征的铸件缺陷检测[J]. 应用科学学报, 2024, 42(5): 757-768. |
[10] | 王子驰, 李斌, 冯国瑞, 张新鹏. 数字图像隐写分析综述[J]. 应用科学学报, 2024, 42(5): 723-732. |
[11] | 王娜, 朱会娟, 宋香梅, 冯霞. 一种基于领域自适应的智能合约安全分析框架[J]. 应用科学学报, 2024, 42(4): 585-597. |
[12] | 李子杰, 张姝, 欧阳昭相, 王俊, 吴迪. 基于场因子分解的xDeepFM推荐模型[J]. 应用科学学报, 2024, 42(3): 513-524. |
[13] | 金彦亮, 吴筱. 基于双流自适应时空增强图卷积网络的手语识别[J]. 应用科学学报, 2024, 42(2): 189-199. |
[14] | 沈坤烨, 周晓飞, 费晓波, 陈雨中, 张继勇, 颜成钢. 基于边缘感知深度残差网络的带钢表面缺陷检测[J]. 应用科学学报, 2023, 41(6): 978-988. |
[15] | 张春森, 朱江乐, 张学芬, 刘旭东, 史书. 融合自注意力机制与生成对抗网络的DEM空洞填充[J]. 应用科学学报, 2023, 41(5): 789-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||