应用科学学报 ›› 2025, Vol. 43 ›› Issue (1): 94-109.doi: 10.3969/j.issn.0255-8297.2025.01.007

• 计算机应用专辑 • 上一篇    下一篇

基于并行优化CBAM的轻量级故障诊断模型

贾志洋1, 许兆1, 冷艳梅1, 闻新2, 龚浩宇1   

  1. 1. 中国石油大学(北京) 克拉玛依校区 计算机系, 新疆维吾尔自治区 克拉玛依 834000;
    2. 南京航空航天大学 航天学院, 江苏 南京 210006
  • 收稿日期:2024-07-10 出版日期:2025-01-30 发布日期:2025-01-24
  • 通信作者: 贾志洋,教授,研究方向为边缘计算、人工智能物联网、故障诊断等。E-mail:jiazhiyang@cupk.edu.cn E-mail:jiazhiyang@cupk.edu.cn
  • 基金资助:
    新疆维吾尔自治区自然科学基金(No.2023D01F42);克拉玛依市创新环境建设计划(创新人才)资助

Lightweight Fault Diagnosis Model Based on Parallel Optimized CBAM

JIA Zhiyang1, XU Zhao1, LENG Yanmei1, WEN Xin2, GONG Haoyu1   

  1. 1. Department of Computer Science, China University of Petroleum-Beijing at Karamay, Karamay 834000, Xinjiang Uygur Autonomous Region, China;
    2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210006, Jiangsu, China
  • Received:2024-07-10 Online:2025-01-30 Published:2025-01-24

摘要: 在工程实践中,故障诊断模型的性能受到多种因素的影响,如强噪声干扰、小样本、模型参数规模较大等,对现有的数据驱动设备诊断智能模型的应用提出了挑战。本文提出一种基于并行优化卷积块注意力模块(convolutional block attention module,CBAM)的轻量级模型PCSA-Net。首先,采用多尺度信号特征提取器(signal feature extractor,SFE)将输入的传感器信号转换为特征映射。然后,优化传统的CBAM,开发协同注意力块,设计一种可学习的层缩放策略,并行化感知数据特征,使用点卷积与平均池化层组合,构建PW-Pool降维模块,减少模型参数量,对特征图的通道特征向量进行积分,得到最终的诊断结果。最后,选取包含轴承常见故障的两个数据集对模型进行验证,实验结果显示,在小样本轴承故障诊断(bearing fault diagnosis,BFD)任务中,本文模型与现有主流的故障诊断框架相比在轻量性和鲁棒性等方面表现更加优异,可满足实际轴承故障检测需求。

关键词: 变工况故障诊断, 卷积神经网络, 注意力机制, 深度学习

Abstract: In engineering practice, the performance of fault diagnosis models is affected by factors such as strong noise interference, limited sample sizes, and high model complexity, which poses challenges to the application of existing data-driven intelligent models for equipment diagnosis. To address these issues, this paper proposes a lightweight model, PCSA-Net, based on a parallel optimized convolutional block attention module (CBAM). First, a multi-scale signal feature extractor (SFE) is used to convert the input sensor signal into a feature map. Then, the traditional CBAM is optimized through the development of a collaborative attention block, the design of a learnable layer scaling strategy, and the parallelization of perceptual data features. Additionally, a PW-Pool dimension reduction module is introduced by combining point convolution with average pooling layers to reduce the number of model parameters. The channel feature vector of the feature map is then integrated to obtain the final diagnosis result. Finally, the proposed model is validated using two datasets containing common bearing faults. Experimental results show that in the small sample bearing fault diagnosis (BFD) task, the proposed model outperforms the existing mainstream fault diagnosis framework in terms of lightness and robustness, and meets the practical needs of bearing fault detection in real-world applications.

Key words: variable operating condition fault diagnosis, convolutional neural network, attention mechanism, deep learning

中图分类号: