[1] Dohoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 383-395.
[2] Candes E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique, 2008, 346(9): 589-592.
[3] Hayashi K, Nagahara M, Tanaka T. A user's guide to compressed sensing for communications systems [J]. IEICE Transactions on Communications, 2013, 96(3): 685-712.
[4] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[5] Blumensath T, Davies M E. Gradient pursuits [J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2370-2382.
[6] Daubechies I, Defrise M, Mol C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
[7] Gilbert A, Strauss M, Tropp J. One sketch for all: fast algorithms for compressed sensing[C]//Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, San Diego, CA, VSA, 2007: 237-246.
[8] Fang Y. Sparse matrix recovery from random samples via 2D orthogonal matching pursuit [R]. IEEE Transactions on Signal Processing, 2011.
[9] Rivenson Y, Stern A. Compressed imaging with a separable sensing operator [J]. IEEE Signal Processing Letters, 2009, 16(6): 449-452.
[10] Lin Y, Wu S H, YU Jia, Lin X D. Separate-combine recovery for compressed sensing of large images [C]//IEEE International Conference on Communications, 2014: 4601-4606.
[11] Cevher V. Learning with compressible priors [C]//Advances in Neural Information Processing Systems, 2009: 261-269.
[12] Rao X, Lau V K N. Compressive sensing with prior support quality information and application to massive MIMO channel estimation with temporal correlation [J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4914-4924.
[13] Zhang L. Image adaptive reconstruction based on compressive sensing via CoSaMP [C]//IEEE International Conference on Information Science and Control Engineering, Shanghai, China, 2015: 760-763.
[14] Ferreira J C, Flores E L, Carrijo G A. Quantization noise on image reconstruction using model-based compressive sensing [J]. IEEE Latin America Transactions, 2015, 13(4): 1167-1177.
[15] Mishra K V, Cho M, Kruger A, Xu W Y. Spectral super-resolution with prior knowledge [J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5342-5357.
[16] 何宜宝, 毕笃彦. 基于广义拉普拉斯分布的图像压缩感知重构[J]. 中南大学学报:自然科学版, 2013, 44(8): 3196-3202. He Y B, Bi D Y. Image compressed sensing reconstruction based on generalized Laplacian distribution [J]. Journal of Central South University: Science and Technology, 2013, 44(8): 3196-3202. (in Chinese) |