应用科学学报 ›› 2017, Vol. 35 ›› Issue (3): 326-336.doi: 10.3969/j.issn.0255-8297.2017.03.006

• 通信工程 • 上一篇    下一篇

基于用户和项目的双视角协同过滤推荐方法

程树林1,2, 张博锋1, 邹国兵1   

  1. 1. 上海大学 计算机工程与科学学院, 上海 200444;
    2. 安庆师范大学 计算机与信息学院, 安徽 安庆 246133
  • 收稿日期:2016-02-28 修回日期:2016-10-03 出版日期:2017-05-30 发布日期:2017-05-30
  • 作者简介:程树林,博士生,副教授,研究方向:个性化推荐,E-mail:chengshulin@shu.edu.cn;张博锋,研究员,博导,研究方向:智能信息处理、个性化推荐,E-mail:bfzhang@shu.edu.cn
  • 基金资助:

    国家自然科学基金(No.61303096);上海市自然科学基金(No.13ZR1454600)资助

Collaborative Filtering Recommendation Based on Double-Perspective of Users and Items

CHENG Shu-lin1,2, ZHANG Bo-feng1, ZOU Guo-bing1   

  1. 1. School of Computer and Science Engineering, Shanghai University, Shanghai 200444, China;
    2. Institute of Computer and Information, Anqing Normal University, Anqing 246133, Anhui Province, China
  • Received:2016-02-28 Revised:2016-10-03 Online:2017-05-30 Published:2017-05-30

摘要:

传统的协同过滤推荐方法存在单视角信息利用不足、预测精度不高、对数据稀疏性敏感等问题,为此提出同时考虑相似用户和相似项目的双视角协同过滤推荐方法。根据辩证的思想,利用项目内部因子和外部因子生成项目融合相似度,有效度量了项目相似性和用户相似性,并解决了双视角协同过滤推荐方法对数据稀疏性敏感的问题。在标准数据集上多次进行的实验表明,基于用户和项目的双视角协同过滤推荐方法优于多个典型的协同过滤推荐方法。

关键词: 双视角, 协同过滤推荐, 融合相似度

Abstract:

Traditional collaborative fltering (CF) recommendation approach has a serious problems such as insufcient usage of single perspective information, unsatisfactory accuracy and sensitivity to data sparsity. To solve these problems, a CF recommendation method based on double-perspective of users and items is proposed by considering information of similar users and similar items. According to the dialectic principle, fusion similarity of items is given by combination of inner-factors and outer-factors of the item. This way, the item similarity and user similarity can be effectively measured. The measurement is robust against data sparsity in the approach of CF recommendation based on double-perspective of user and item. Several experiments are carried on benchmark datasets. The results show that the proposed CF recommendation method based on double-perspective of users and items outperforms several other typical CF approaches.

Key words: collaborative fltering recommendation, double-perspective, fusion similarity of item

中图分类号: