[1] Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook[M]. New York:Springer, 2011.
[2] Shi Y, Larson M, Hanjalic A. Collaborative fltering beyond the user-item matrix:a survey of the state of the art and future challenges[J]. ACM Computing Surveys, 2014, 47(1):1-45.
[3] Park D H, Kim H K, Choi I Y, Kim, J K. A literature review and classifcation of recommender systems research[J]. Expert Systems with Applications, 2012, 39(11):10059-10072.
[4] Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative fltering[J]. IEEE on Internet Computing, 2003, 7(1):76-80
[5] 邓爱林,朱扬勇,施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报,2003, 14(9):1621-1628. Deng A L, Zhu Y Y, Shi B L. A collaborative fltering recommendation algorithm based on item rating prediction[J]. Journal of Software, 2003, 14(9):1621-1628(in Chinese).
[6] Ma H, King I, Lü M R. Effective missing data prediction for collaborative fltering[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2007:39-46.
[7] Lu Z, Dou Z, Lian J, Xie X, Yang Q. Content-based collaborative fltering for news topic recommendation[C]//29th AAAI Conference on Artifcial Intelligence, 2015:217-233.
[8] Song R P, Wang B, Huang G M, Liu Q D, Hu R J, Zhang R S. A hybrid recommender algorithm based on an improved similarity method[J]. Applied Mechanics and Materials, 2014, 475:978-982.
[9] Moin A, Ignat C L. Hybrid weighting schemes for collaborative fltering[D]. Paris:INRIA Nancy, 2014.
[10] Goldberg D, Nichols D, Oki B M, Terry D. Using collaborative fltering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70.
[11] Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative fltering[C]//Proceedings of the Fourteenth Conference on Uncertainty in Artifcial Intelligence. Morgan Kaufmann Publishers Inc., 1998:43-52.
[12] Deshpande M, Karypis G. Item-based top-n recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1):143-177.
[13] Rennie J D M, Srebro N. Fast maximum margin matrix factorization for collaborative prediction[C]//Proceedings of the 22nd International Conference on Machine Learning, 2005:713-719.
[14] Choi K, Suh Y. A new similarity function for selecting neighbors for each target item in collaborative fltering[J]. Knowledge-Based Systems, 2013, 37:146-153.
[15] Forsati R, Mahdavi M, Shamsfard M, Sarwat M. Matrix factorization with explicit trust and distrust relationships[J]. ArXiv:1408. 0325Ⅵ[cs.SI], 2014.
[16] Ghazanfar M A, Prugel A. The advantage of careful imputation sources in sparse dataenvironment of recommender systems:Generating improved svd-based recommendations[J]. Informatica, 2013, 37(1):61-92.
[17] Anand D, Bharadwaj K K. Pruning trust-distrust network via reliability and risk estimates for quality recommendations[J]. Social Network Analysis and Mining, 2013, 3(1):65-84.
[18] Agarwal V, Bharadwaj K K. A collaborative fltering framework for friends recommendation in social networks based on interaction intensity and adaptive user similarity[J]. Social Network Analysis and Mining, 2013, 3(3):359-379.
[19] Li W, Ye Z, Xin M, Jin Q. Social recommendation based on trust and influence in SNS environments[J]. Multimedia Tools and Applications, 2015:1-18.
[20] Odi?A, Tkal?i?, Tasi? J F, Košir A. Predicting and detecting the relevant contextual information in a movie-recommender system[J]. Interacting with Computers, 2013, 25(1):74-90.
[21] Shani G, Gunawardana A. Evaluating recommendation systems[M]. New York:Springer, 2011:257-297.
[22] Yang X, Guo Y, Liu Y, Steck H. A survey of collaborative fltering based social recommender systems[J]. Computer Communications, 2014, 41:1-10.
[23] Zenebe A, Zhou L, Norcio A F. User preferences discovery using fuzzy models[J]. Fuzzy Sets and Systems, 2010, 161(23):3044-3063.
[24] Wang J, De Vries A P, Reinders M J T. Unifying user-based and item-based collaborative fltering approaches by similarity fusion[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006:501-508. |