[1] 赵杰.光伏发电并网系统的相关技术研究[D].天津:天津大学, 2012. [2] 邓维,刘方明,金海,等.云计算数据中心的新能源应用:研究现状与趋势[J].计算机学报, 2013, 36(3):582-598. Deng W, Liu F M, Jin H, et al. Leveraging renewable energy in cloud computing datacenters:state of the art and future research[J]. Chinese Journal of Computers, 2013, 36(3):582-598.(in Chinese) [3] 陈倩.分布式光伏并网发电对配电网电能质量的影响[D].上海:上海交通大学, 2015. [4] 王继东,庞文杰. Fisher判别分类法在光伏并网系统稳态电能质量评估中的应用[J].电力自动化设备, 2017, 37(3):50-54. Wang J D, Pang W J. Application of Fisher discriminant analysis in steady-state power quality evaluation of grid-connected photovoltaic system[J]. Electric Power Automation Equipment, 2017, 37(3):50-54.(in Chinese) [5] Shi Z C, Liang H, Dinavahi V. Direct interval forecast of uncertain wind power based on recurrent neural networks[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3):1177-1187. [6] Li Z L, Xia J, Liu A, et al. States prediction for solar power and wind speed using BBA-SVM[J]. IET Renewable Power Generation, 2019, 13(7):1115-1122. [7] 陈振宇,刘金波,李晨,等.基于LSTM与XGBoost组合模型的超短期电力负荷预测[J].电网技术, 2020, 44(2):614-620. Chen Z Y, Liu J B, Li C, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44(2):614-620.(in Chinese) [8] Ju Y, Sun G Y, Chen Q H, et al. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting[J]. IEEE Access, 2019, 7:28309-28318. [9] 郑红,叶成,金永红,等.基于Stacking集成学习的流失用户预测方法[J].应用科学学报, 2020, 38(6):944-954. Zheng H, Ye C, Jin Y H, et al. Customer churn prediction method based on stacking ensemble learning[J]. Journal of Applied Sciences, 2020, 38(6):944-954.(in Chinese) [10] Prasad R, Ali M, Xiang Y, et al. A double decomposition-based modelling approach to forecast weekly solar radiation[J]. Renewable Energy, 2020, 152:9-22. [11] Banik R, Das P, Ray S, et al. Wind power generation probabilistic modeling using ensemble learning techniques[J]. Materials Today:Proceedings, 2020, 26:2157-2162. [12] 史佳琪,张建华.基于多模型融合Stacking集成学习方式的负荷预测方法[J].中国电机工程学报, 2019, 39(14):4032-4042. Shi J Q, Zhang J H. Load forecasting based on multi-model by Stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39(14):4032-4042.(in Chinese) [13] Wolpert D H. Stacked generalization[J]. Neural Networks, 1992, 5(2):241-259. [14] 鲁莹,郑少智. Stacking学习与一般集成方法的比较研究[J].中国科技论文在线精品论文, 2018, 11(4):372-379. Lu Y, Zheng S Z. A comparative study of Stacking learning and general ensemble methods[J]. Highlights of Sciencepaper Online, 2018, 11(4):372-379.(in Chinese) [15] Menahem E, Rokach L, Elovici Y. Troika-an improved stacking schema for classification tasks[J]. Information Sciences, 2009, 179(24):4097-4122. [16] Abawajy J H, Kelarev A, Chowdhury M. Large iterative multitier ensemble classifiers for security of big data[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3):352-363. [17] 韦艳艳,李陶深,刘美玲.融合DECORATE的异构分类器集成算法[J].计算机应用研究, 2012, 29(11):4134-4136, 4147. Wei Y Y, Li T S, Liu M L. Algorithm of heterogeneous classifiers ensembles based on DECORATE[J]. Application Research of Computers, 2012, 29(11):4134-4136, 4147.(in Chinese) [18] Zhou Z H, Jiang Y. NeC4.5:neural ensemble based C4.5[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(6):770-773. [19] Breiman L. Stacked regressions[J]. Machine Learning, 1996, 24(1):49-64. [20] 徐慧丽. Stacking算法的研究及改进[D].广州:华南理工大学, 2018. [21] 徐耀松,段彦强,王雨虹,等.基于相似日选择与改进Stacking集成学习的短期负荷预测[J].传感技术学报, 2020, 33(4):537-545. Xu Y S, Duan Y Q, Wang Y H, et al. Short-term load prediction based on similar day selection and improved Stacking integration learning[J]. Chinese Journal of Sensors and Actuators, 2020, 33(4):537-545.(in Chinese) |