应用科学学报 ›› 2024, Vol. 42 ›› Issue (3): 513-524.doi: 10.3969/j.issn.0255-8297.2024.03.012

• 计算机科学与应用 • 上一篇    下一篇

基于场因子分解的xDeepFM推荐模型

李子杰1,2, 张姝1,2, 欧阳昭相1,3, 王俊1,2, 吴迪1,2   

  1. 1. 云南师范大学 民族教育信息化教育部重点实验室, 云南 昆明 650500;
    2. 云南师范大学 云南省智慧教育重点实验室, 云南 昆明 650500;
    3. 德宏师范高等专科学校 信息学院, 云南 芒市 678400
  • 收稿日期:2021-12-15 发布日期:2024-06-06
  • 通信作者: 张姝,副教授,研究方向为智能知识处理。E-mail: zhangshu@ynnu.edu.cn E-mail:zhangshu@ynnu.edu.cn
  • 基金资助:
    国家自然科学基金(No. 62266054, No. 62166050)、云南省教育厅科学研究基金(No. 2023Y0535)资助

xDeepFM Recommendation Model Based on Field Factorization

LI Zijie1,2, ZHANG Shu1,2, OUYANG Zhaoxiang1,3, WANG Jun1,2, WU Di1,2   

  1. 1. Key Laboratory of Educational Information for Nationalities, Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan, China;
    2. Yunnan Key Laboratory of Smart Education, Yunnan Normal University, Kunming 650500, Yunnan, China;
    3. School of Information, Dehong Teacher's College, Mangshi 678400, Yunnan, China
  • Received:2021-12-15 Published:2024-06-06

摘要: 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。

关键词: 推荐算法, 极深因子分解机, 场因子分解, 深度学习

Abstract: The eXtreme deep factorization machine (xDeepFM) is a context-aware recommendation model integrating a compressed interaction network for controllable feature cross-ordering. The network is combined with deep neural network to optimize the recommendation performance. To further improve xDeepFM’s performance in recommended scenarios, eXtreme deep field factorization machine (xDeepFFM) is proposed in this paper. The improved model enhances feature expression capabilities through field information and uses multiple compressed interaction networks to learn higher-order combinatorial features based on field information. Furthermore, this paper analyzes the rationality of the setting of user field and item field. The effectiveness of the improved model is evaluated using area under curve and Log-likelihood loss metrics on three public datasets of different sizes.

Key words: recommendation algorithm, eXtreme deep factorization machine (xDeepFM), field factorization, deep learning

中图分类号: