[1] Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry [J]. Communications of the ACM, 1992, 35(12): 61-70. [2] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems [J]. Computer, 2009, 42(8): 30-37. [3] Sedhain S, Menon A K, Sanner S, et al. Autorec: autoencoders meet collaborative filtering [C]//The 24th International Conference on World Wide Web, 2015: 111-112. [4] Shan Y, Hoens T R, Jiao J, et al. Deep crossing: web-scale modeling without manually crafted combinatorial features [C]//The 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2016: 255-262. [5] He X N, Liao L Z, Zhang H W, et al. Neural collaborative filtering [C]//The 26th International Conference on World Wide Web, 2017: 173-182. [6] Qu Y R, Cai H, Ren K, et al. Product-based neural networks for user response prediction [C]//IEEE 16th International Conference on Data Mining (ICDM), 2016: 1149-1154. [7] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems [C]//The 1st Workshop on Deep Learning for Recommender Systems, 2016: 7-10. [8] Guo H F, Tang R M, Ye Y M, et al. DeepFM: a factorization-machine based neural network for CTR prediction [DB/OL]. 2017[2021-12-15]. http: //arxiv.org/abs/1703.04247. [9] Guo Q Y, Zhuang F Z, Qin C, et al. A survey on knowledge graph-based recommender systems [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3549-3568. [10] Sun R, Cao X Z, Zhao Y, et al. Multi-modal knowledge graphs for recommender systems [C]//The 29th ACM International Conference on Information & Knowledge Management, 2020: 1405-1414. [11] Zhao W X, Mu S L, Hou Y P, et al. RecBole: towards a unified, comprehensive and efficient framework for recommendation algorithms [DB/OL]. 2020[2021-12-15]. https://arxiv.org/abs/2011.01731. [12] Zhou K, Wang H, Zhao W X, et al. S3-rec: self-supervised learning for sequential recommendation with mutual information maximization [C]//The 29th ACM International Conference on Information & Knowledge Management, 2020: 1893-1902. [13] Zhou G, Mou N, Fan Y, et al. Deep interest evolution network for click-through rate prediction [DB/OL]. 2020[2021-12-15]. https://arxiv.org/abs/1809.03672. [14] 陈卓, 李倩, 杜军威. 面向化工领域社区问答的答案质量预测研究[J]. 东北师大学报(自然科学版), 2021, 53(3): 81-88. Chen Z, Li Q, Du J W. Prediction of answer quality for community Q & A in chemical industry [J]. Journal of Northeast Normal University (Natural Science Edition), 2021, 53(3): 81-88. (in Chinese) [15] Zhang J, Wu Z C, Li F, et al. Deep attentional factorization machines learning approach for driving safety risk prediction [J]. Journal of Physics: Conference Series, 2021, 1732: 012007. [16] Lian J X, Zhou X H, Zhang F Z, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems [C]//The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 1754-1763. [17] Juan Y, Zhuang Y, Chin W S, et al. Field-aware factorization machines for CTR prediction [C]//The 10th ACM Conference on Recommender Systems, 2016: 43-50. [18] 黄若然, 崔莉, 韩传奇. 推荐系统中稀疏情景预测的特征—类别交互因子分解机[J]. 计算机研究与发展, 2022, 59(7): 1553-1568. Huang R R, Cui L, Han C Q. Feature-over-field interaction factorization machine for sparse contextualized prediction in recommender systems [J]. Journal of Computer Research and Development, 2022, 59(7): 1553-1568. (in Chinese) [19] Zhang W N, Du T M, Wang J. Deep learning over multi-field categorical data [C]//European Conference on Information Retrieval, 2016: 45-57. [20] He X N, Chua T S. Neural factorization machines for sparse predictive analytics [C]//The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017: 355-364. [21] Harper F M, Konstan J A. The MovieLens datasets: history and context [J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): 1-19. [22] Ziegler C N, Mcnee S M, Konstan J A, et al. Improving recommendation lists through topic diversification [C]//The 14th International Conference on World Wide Web, 2005: 22-32. |