[1] Goodfellow I, Bengio Y, Courville A. Deep learning: adaptive computation and machine learning series [M]. Cambridge, MA: MIT Press, 2016. [2] Nishi T, Doshi P, Prokhorov D. Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning [J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 287-297. [3] Kingma D P, Welling M. Auto-encoding variational Bayes [DB/OL]. 2013[2023-03-05]. http://arxiv.org/abs/1312.6114. [4] Pu Y C, Gan Z, Henao R, et al. Variational autoencoder for deep learning of images, labels and captions [J]. Advances in Neural Information Processing Systems, 2016, 29: 1-9. [5] Santana E, Emigh M, Principe J C. Information theoretic-learning auto-encoder [C]//2016 International Joint Conference on Neural Networks (IJCNN), 2016: 3296-3301. [6] Sun Y Y, Xu L L, Li Y, et al. Utilizing deep architecture networks of VAE in software fault prediction [C]//2018 IEEE International Conference on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018), 2018: 870-877. [7] Niu Z J, Yu K, Wu X F. LSTM-based VAE-GAN for time-series anomaly detection [J]. Sensors, 2020, 20(13): 3738-3750. [8] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks [DB/OL]. 2014[2023-03-05]. http://arxiv.org/abs/1406.2661. [9] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks [C]//International Conference on Machine Learning, 2017: 214-223. [10] Zhan L, Xu X W, Qiao X, et al. Fault feature extraction method of a permanent magnet synchronous motor based on VAE-WGAN [J]. Processes, 2022, 10(2): 200-216. [11] Thrun S, Pratt L. Learning to learn: introduction and overview [M] Boston, MA: Springer, 1998. [12] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks [C]//International Conference on Machine Learning, 2017: 1126-1135. [13] Nichol A, Achiam J, Schulman J. On first-order meta-learning algorithms [DB/OL]. 2018[2023-03-05]. https://arxiv.org/abs/1803.029-99. [14] Pang K, Zhang Y X, Yin C K. A decision-making method for self-driving based on deep reinforcement learning [J]. Journal of Physics: Conference Series, 2020, 1576(1): 012025-012033. [15] Tseng K K, Yang H, Wang H Y, et al. Autonomous driving for natural paths using an improved deep reinforcement learning algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5118-5128. [16] Wu Y Q, Liao S Q, Liu X, et al. Deep reinforcement learning on autonomous driving policy with auxiliary critic network [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7): 3680-3690. [17] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518: 529-533. [18] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning [J]. Computer Science, 2015: 1-14. [19] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms [DB/OL]. 2017[2023-03-05]. https://arxiv.org/abs/1707.06347. [20] Guo Y T, Zhang Q C, Wang J J, et al. Hierarchical reinforcement learning-based policy switching towards multi-scenarios autonomous driving [C]//2021 International Joint Conference on Neural Networks (IJCNN), 2021: 1-8. [21] Ye F, Cheng X X, Wang P, et al. Automated lane change strategy using proximal policy optimization-based deep reinforcement learning [C]//2020 IEEE Intelligent Vehicles Symposium (IV), 2020: 1746-1752. [22] 刘明明, 张敏情, 刘佳, 等. 基于生成对抗网络的无载体信息隐藏[J]. 应用科学学报, 2018, 36(2): 371-382. Liu M M, Zhang M Q, Liu J, et al. Coverless information hiding based on generative adversarial networks [J]. Journal of Applied Sciences, 2018, 36(2): 371-382. (in Chinese) [23] Jin Y L, Ji Z Y, Zeng D, et al. VWP: an efficient DRL-based autonomous driving model [J]. IEEE Transactions on Multimedia, 2022: 1-13. |